Construction of control ensuring equilibrium conditions in a multistep two-person positional game
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6, pp. 919-927
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analytical approach is suggested for finding a strategy in a conflict situation described by a linear control system. A modified dynamic programming method is examined as applied to a multistep differential game. The method is used to construct a Nash equilibrium solution.
@article{ZVMMF_2014_54_6_a3,
     author = {G. A. Zograbyan and V. Yu. Reshetov},
     title = {Construction of control ensuring equilibrium conditions in a multistep two-person positional game},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {919--927},
     year = {2014},
     volume = {54},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a3/}
}
TY  - JOUR
AU  - G. A. Zograbyan
AU  - V. Yu. Reshetov
TI  - Construction of control ensuring equilibrium conditions in a multistep two-person positional game
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 919
EP  - 927
VL  - 54
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a3/
LA  - ru
ID  - ZVMMF_2014_54_6_a3
ER  - 
%0 Journal Article
%A G. A. Zograbyan
%A V. Yu. Reshetov
%T Construction of control ensuring equilibrium conditions in a multistep two-person positional game
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 919-927
%V 54
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a3/
%G ru
%F ZVMMF_2014_54_6_a3
G. A. Zograbyan; V. Yu. Reshetov. Construction of control ensuring equilibrium conditions in a multistep two-person positional game. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6, pp. 919-927. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a3/

[1] Reshetov V. Yu., “Analiz vozmozhnosti prinyatiya reshenii s ispolzovaniem matematicheskikh modelei voennykh konfliktov”, Tr. V Mos. mezhdunar. konf. po issledovaniyu operatsii, posvyaschennoi 90-letiyu so dnya rozhdeniya akad. N. N. Moiseeva (2007), 134–136

[2] Kiselev Yu. N., Reshetov V. Yu., Avvakumov S. N., Orlov M. V., “Postroenie optimalnogo resheniya i mnozhestvo dostizhimosti v odnoi zadache raspredeleniya resursov”, Probl. optimalnogo upravleniya, 2, MAKS Press, M., 2007

[3] Nikolskii M. S., “Uproschennaya igrovaya model vzaimodeistviya dvukh gosudarstv”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibernetika, 2009

[4] Corless M., Leitmann G., Soldatos A. G., “Stabilizing uncertain systems with bounded control”, Mechnics and Control, Lecture Notes in Contol and Informat., 151, 1991, 415–528 | DOI | MR

[5] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[6] Zhukovskii V. I., Kudryavtsev K. N., Uravnoveshivanie konfliktov i prilozheniya, Lenand, M., 2011

[7] Kononenko A. F., “O mnogoshagovykh konfliktakh s obmenom informatsii”, Zh. vychisl. matem. i matem. fiz., 17:4 (1977), 922–932 | MR

[8] Bunakov A. E., “Ravnovesnye resheniya pozitsionnykh dinamicheskikh igr s integralno-terminalnymi kriteriyami”, Zh. vychisl. matem. i matem. fiz., 22:6 (1982), 1352–1359 | MR | Zbl