@article{ZVMMF_2014_54_6_a14,
author = {I. E. Genrikhov},
title = {Analysis of the generalization ability of a full decision tree},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1033--1047},
year = {2014},
volume = {54},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a14/}
}
TY - JOUR AU - I. E. Genrikhov TI - Analysis of the generalization ability of a full decision tree JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 1033 EP - 1047 VL - 54 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a14/ LA - ru ID - ZVMMF_2014_54_6_a14 ER -
I. E. Genrikhov. Analysis of the generalization ability of a full decision tree. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6, pp. 1033-1047. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a14/
[1] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Problemy kibernetiki, 1978, no. 33, 5–68
[2] Zhuravlev Yu. I., Ryazanov V. V., Senko O. V., “Raspoznavanie”. Matematicheskie metody. Programmnaya sistema. Prakticheskie primeneniya, FAZIS, M., 2006
[3] Djukova E. V., Peskov N. V., “Selection of typical objects in classes for recognition problems”, J. Pattern Recognition and Image Analys., 17:3 (2007), 363–367 | DOI
[4] Donskoi V. I., Bashta A. I., Diskretnye modeli prinyatiya reshenii pri nepolnoi informatsii, Tavriya, Simferopol, 1992
[5] Genrikhov I. E., Postroenie polnogo reshayuschego dereva na baze algoritma S4.5, Soobschenie po prikl. matem., VTs RAN, M., 2009
[6] Quinlan J. R., C4.5: Programs for machine learning, Morgan Kaufmann, San Mateo, 1993
[7] Genrikhov I. E., “Synthesis and analysis of recognizing procedures on the basis of full decision trees”, J. Pattern Recognition and Image Analysis, 21:1 (2011), 45–51 | DOI
[8] Genrikhov I. E., Dyukova E. V., “Klassifikatsiya na osnove polnykh reshayuschikh derevev”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 750–761 | Zbl
[9] Genrikhov I. E., “Issledovanie pereobuchennosti raspoznayuschikh protsedur na osnove polnykh reshayuschikh derevev”, Programmnye produkty i sistemy, 96:4 (2011), 141–147
[10] Breiman L., “Random forests”, Machine Learning, 45:1 (2001), 5–32 | DOI | Zbl
[11] Holmes G., Pfahringer B., Kirkby R., Frank E., Hall M., “Multiclass alternating decision trees”, Europ. Conf. Machine Learning, Springer, Berlin, 2002, 105–122 | MR
[12] Vapnik V. N., Chervonenkis A. Ya., Teoriya raspoznavaniya obrazov, Nauka, M., 1974
[13] Vorontsov K. V., Kombinatornaya teoriya nadezhnosti obucheniya po pretsedentam, Dis. ... dok. fiz.-matem. nauk, 05-13-17, VTs RAN, M., 2010
[14] Kuncheva L. I., Combining pattern classifiers methods and algorithms, Wiley, New York, 2004 | MR | Zbl
[15] Schapire R. E., Freund Y., Lee W. S., Bartlett P. L., “Boosting the margin: a new explanation for the effectiveness of voting methods”, Annals of Statistics, 26:5 (1998), 1651–1686 | DOI | MR | Zbl
[16] Mason L., Margins and combined classifiers, A thesis submitted for the degree of doctor of philosophy of the australian national university, 1999, 118 pp.
[17] Burges C. J. C., “A tutorial on support vector machines for pattern recognition”, Data Mining and Knowledge Discovery, 2:2 (1998), 121–167 | DOI
[18] Bartlett P. L., “For valid generalization the size of the weights is more important than the size of the network”, Advances in Neural Informat. Proc. Systems, 9 (1997), 134–140
[19] Golea M., Bartlett P. L., Lee W. S., Mason L., Generalization in decision trees and DNF: Does size matter?, Advances in Neural Informat. Proc. Systems, 10 (1998), 259–265
[20] Mason L., Bartlett P. L., Golea M., “Generalization error of combined classifiers”, Comp. System Sci., 65:2 (2002), 415–438 | DOI | MR | Zbl
[21] Sauer N., “On the density of families of sets”, Combinatorial Theory Ser. A, 1972, no. 13, 145–147 | DOI | MR | Zbl
[22] Asuncion A., Newman D., UCI Machine learning repository, , University of California, School of Information and Computer Science, Irvine, 2007 http://www.ics.uci.edu/m̃learn/MLRepository.html
[23] Koltchinskii V., “Rademacher penalties and structural risk minimization”, IEEE Transactions on Information Theory, 47:5 (2001), 1902–1914 | DOI | MR | Zbl
[24] Koltchinskii V., Panchenko D., “Empirical margin distributions and bounding the generalization error of combined classifiers”, The Annals of Statistics, 30:1 (2002), 1–50 | MR | Zbl
[25] Lozano F., “Model selection using Rademacher penalization”, Proc. of the 2nd ICSC Symp. on Neural Computat., NC2000, ICSC Academic Press, Berlin, 2000
[26] Bartlett P. L., Mendelson S., “Rademacher and Gaussian complexities: Risk bounds and structural results”, J. Machine Learning Research, 3 (2002), 463–482 | MR
[27] McDiarmid C., “On the method of bounded differences”, Surveys in Combinatorics, London Mathematical Soc. Lecture Notes, 141, ed. J. Siemons, Cambridge Univ. Press, 1989, 148–188 | MR