A solution of the Blasius problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical Blasius boundary layer problem in its simplest statement consists in finding an initial value for the function satisfying the Blasius ODE on semi-infinite interval such that a certain condition at infinity be satisfied. Despite an apparent simplicity of the problem and more than a century of effort of numerous scientists, this elusive constant is determined at present numerically and not much better than it was done by Töpfer in 1912. Here we find this (Blasius) constant rigorously in closed form as a convergent series of rational numbers. Asymptotic behaviour, and lower and upper bounds for the partial sums of the series are also given.
@article{ZVMMF_2014_54_6_a12,
     author = {V. P. Varin},
     title = {A solution of the {Blasius} problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1022},
     year = {2014},
     volume = {54},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a12/}
}
TY  - JOUR
AU  - V. P. Varin
TI  - A solution of the Blasius problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1022
VL  - 54
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a12/
LA  - en
ID  - ZVMMF_2014_54_6_a12
ER  - 
%0 Journal Article
%A V. P. Varin
%T A solution of the Blasius problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1022
%V 54
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a12/
%G en
%F ZVMMF_2014_54_6_a12
V. P. Varin. A solution of the Blasius problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a12/

[1] H. Blasius, “Grenzschichten in Fliissigkeiten mit kleiner Reibung”, Z. Math. Phys., 56 (1908), 1–37

[2] C. Töpfer, “Bemerkungen zu dem Aufsatz von H. Blasius 'Grenzschichten in Flussigkeiten mit kleiner Reibung'”, Z. Math. Phys., 60 (1912), 397–398

[3] J. P. Boyd, “The Blasius function in the complex plane”, Experiment. Math., 8 (1999), 381–394 | DOI | MR | Zbl

[4] S. Abbasbandy, C. Bervillier, Analytic continuations of Taylor series and the two-point boundary value problem of some nonlinear ordinary differential equations, 2011, arXiv: 1104.5073v1 | MR

[5] L. Crocco, “Sull strato limite laminare nei gas lungo una lamina plana”, Rend. Math. Appl. Ser. 5, 21 (1941), 138–152

[6] B. Brighi, A. Pruchard, T. Sari, “On the Blasius problem”, Adv. Differ. Eqn., 13 (2008), 509–600 | MR | Zbl

[7] F. Ahmad, W. A. Albarakati, “Application of Pade approximation to solve the Blasius problem”, Proc. Pakistan. Acad. Sci., 44:1 (2007), 17–19 | MR

[8] H. Weyl, “Concerning the differential equations of some boundary-layer problems”, Proc. Natl. Acad. Sci., 27 (1941), 578–583 | DOI | MR

[9] E. Hille, Analytic Functions Theory, v. 1, Chelsea, NY, 1959

[10] A. J. Callegari, M. B. Friedman, “An analytical solution of a nonlinear singular boundary value problem in the theory of viscous fluids”, J. Math. Anal. Appl., 21 (1968), 510–529 | DOI | MR | Zbl

[11] M. Mihoubi, R. Mahdid, “The inverse of power series and the partial Bell polynomials”, J. Integer Sequences, 15 (2012), 1–16 | MR

[12] D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions, 2005, arXiv: math/0501052v2 | MR

[13] L. V. Ahlfors, Complex Analysis, 3rd ed., MGH, 1979

[14] K. Knopp, Theory and Applications of Infinite Series, Blackie Son, London, 1946

[15] D. H. Bailey, “A Fortran-90 based multiprecision system”, ACM Trans. Math. Software, 21 (1995), 379–387 | DOI | Zbl

[16] V. P. Varin, Keldysh Institute preprints, 2010, 064, 12 pp. http://library.keldysh.ru/preprint.asp?lg=e&id=2010-64

[17] E. J. Weniger, “Interpolation between sequence transformations”, Numer. Alg., 3 (1992), 477–486 | DOI | MR | Zbl

[18] C. Brezinski, M. R. Zaglia, Extrapolation Methods: Theory and Practice, Elsevier, Amsterdam, 2002 | MR

[19] T. Fessler, W. F. Ford, Smith D. A., “Algorithm 602, HURRY: An acceleration algorithm for scalar sequences and series”, ACM Trans. Math. Software, 9 (1983), 355–357 | DOI | MR