Mathematical model of a kinetic boundary layer
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6, pp. 1000-1007
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The two-dimensional (plane) problem of a hypersonic kinetic boundary layer developing on a thin body in the case of a homogeneous polyatomic gas flow with no dissociation or electron excitation is considered assuming that energy exchange between translational and internal molecular degrees of freedom is easy. (The approximation of a hypersonic kinetic boundary layer arises from the kinetic theory of gases and, within the thin-layer model, takes into account the strong nonequilibrium of the hypersonic flow with respect to translational and internal degrees of freedom of the gas particles.) A method is proposed for constructing the solution of the given kinetic problem in terms of a given solution of an equivalent well-studied classical Navier–Stokes hypersonic boundary layer problem (which is traditionally formulated on the basis of the Navier–Stokes equations).
@article{ZVMMF_2014_54_6_a10,
     author = {A. L. Ankudinov},
     title = {Mathematical model of a kinetic boundary layer},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1000--1007},
     year = {2014},
     volume = {54},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a10/}
}
TY  - JOUR
AU  - A. L. Ankudinov
TI  - Mathematical model of a kinetic boundary layer
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 1000
EP  - 1007
VL  - 54
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a10/
LA  - ru
ID  - ZVMMF_2014_54_6_a10
ER  - 
%0 Journal Article
%A A. L. Ankudinov
%T Mathematical model of a kinetic boundary layer
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 1000-1007
%V 54
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a10/
%G ru
%F ZVMMF_2014_54_6_a10
A. L. Ankudinov. Mathematical model of a kinetic boundary layer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6, pp. 1000-1007. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a10/

[1] Nikolskii V. S., “Kineticheskaya model giperzvukovykh techenii razrezhennogo gaza”, Matem. modelirovanie, 8:12 (1996), 29–46 | MR | Zbl

[2] Cheng H. K., “The viscous shock layer problem revisited”, Proc. Intern. Conference of Research in Hypersonic Technologies (Zhukovsky, Russia, Sept. 19–21, 1994), 1–16

[3] Kuznetsov M. M., Nikolskii V. S., “Kineticheskii analiz giperzvukovykh vyazkikh techenii mnogoatomnogo gaza v tonkom trekhmernom udarnom sloe”, Uch. zap. TsAGI, 16:3 (1985), 38–49 | Zbl

[4] Ankudinov A. L., “Tonkosloinaya versiya momentnykh uravnenii v zadache pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 52:5 (2012), 970–976 | Zbl

[5] Cheng H. K., Emanuel G., “Perspective on hypersonic nonequilibrium flow”, AIAA J., 33:3 (1995), 385–400 | DOI | Zbl

[6] Cheng H. K., The blunt body problem in hypersonic flow at low Reynolds number, IAS Paper No 63-92, 1963

[7] Ankudinov A. L., “O chislennom integrirovanii uravnenii pogranichnogo sloya v peremennykh Mizesa”, Uch. zap. TsAGI, 5:5 (1974), 114–188

[8] Dyshko A. L., Reshenie uravneniya Mizesa teorii pogranichnogo sloya, Sb. Vychisl. matem. No 7, VTs AN SSSR, M., 1961

[9] Ankudinov A. L., “O raschete szhimaemogo pogranichnogo sloya s massoobmenom v peremennykh Mizesa”, Aerodinamicheskoe nagrevanie pri sverkhzvukovykh skorostyakh, Tr. TsAGI, 1881, 1977, 61–66 | MR

[10] Mitchell A. R., Thomson I. Y., “Finite difference methods of solution of the von Mises boundary layer equation with special reference to conditions near a singularity”, Zeitsch. fur angewandte Math. und Phys., 9:1 (1958) | MR | Zbl

[11] Ankudinov A. L., “Raschet vyazkogo giperzvukovogo udarnogo sloya s podvodom massy pri umerenno malykh chislakh Reinoldsa”, Izv. AN CCCR. MZhG, 1970, no. 3, 40–45 | MR

[12] Ankudinov A. L., “Vduv inorodnogo gaza v giperzvukovoi vyazkii udarnyi sloi”, Izv. AN CCCR. MZhG, 1972, no. 4, 110–116