Numerical algorithm for solving sesquilinear matrix equations of a certain class
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6, pp. 901-904
A relationship is found between the solutions to the sesquilinear matrix equation $X^*DX+AX+X^*B+C=0$, where all the matrix coefficients are $n\times n$ matrices, and the neutral subspaces of the $2n\times 2n$ matrix $M=\begin{pmatrix}C& A\\ B& D\end{pmatrix}$. This relationship is used to design an algorithm for solving matrix equations of the indicated type. Numerical results obtained with the help of the proposed algorithm are presented.
@article{ZVMMF_2014_54_6_a1,
author = {Yu. O. Vorontsov and Kh. D. Ikramov},
title = {Numerical algorithm for solving sesquilinear matrix equations of a certain class},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {901--904},
year = {2014},
volume = {54},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a1/}
}
TY - JOUR AU - Yu. O. Vorontsov AU - Kh. D. Ikramov TI - Numerical algorithm for solving sesquilinear matrix equations of a certain class JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 901 EP - 904 VL - 54 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a1/ LA - ru ID - ZVMMF_2014_54_6_a1 ER -
%0 Journal Article %A Yu. O. Vorontsov %A Kh. D. Ikramov %T Numerical algorithm for solving sesquilinear matrix equations of a certain class %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 901-904 %V 54 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a1/ %G ru %F ZVMMF_2014_54_6_a1
Yu. O. Vorontsov; Kh. D. Ikramov. Numerical algorithm for solving sesquilinear matrix equations of a certain class. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 6, pp. 901-904. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_6_a1/