Uniqueness of a high-order accurate bicompact scheme for quasilinear hyperbolic equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5, pp. 815-820

Voir la notice de l'article provenant de la source Math-Net.Ru

The possibility of constructing new third- and fourth-order accurate differential-difference bicompact schemes is explored. The schemes are constructed for the one-dimensional quasilinear advection equation on a symmetric three-point spatial stencil. It is proved that this family of schemes consists of a single fourth-order accurate bicompact scheme. The result is extended to the case of an asymmetric three-point stencil.
@article{ZVMMF_2014_54_5_a8,
     author = {M. D. Bragin and B. V. Rogov},
     title = {Uniqueness of a high-order accurate bicompact scheme for quasilinear hyperbolic equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {815--820},
     publisher = {mathdoc},
     volume = {54},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a8/}
}
TY  - JOUR
AU  - M. D. Bragin
AU  - B. V. Rogov
TI  - Uniqueness of a high-order accurate bicompact scheme for quasilinear hyperbolic equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 815
EP  - 820
VL  - 54
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a8/
LA  - ru
ID  - ZVMMF_2014_54_5_a8
ER  - 
%0 Journal Article
%A M. D. Bragin
%A B. V. Rogov
%T Uniqueness of a high-order accurate bicompact scheme for quasilinear hyperbolic equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 815-820
%V 54
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a8/
%G ru
%F ZVMMF_2014_54_5_a8
M. D. Bragin; B. V. Rogov. Uniqueness of a high-order accurate bicompact scheme for quasilinear hyperbolic equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5, pp. 815-820. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a8/