@article{ZVMMF_2014_54_5_a7,
author = {S. A. Nazarov},
title = {Asymptotics of eigenvalues of the {Dirichlet} problem in a skewed $\mathcal{T}$-shaped waveguide},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {793--814},
year = {2014},
volume = {54},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a7/}
}
TY - JOUR
AU - S. A. Nazarov
TI - Asymptotics of eigenvalues of the Dirichlet problem in a skewed $\mathcal{T}$-shaped waveguide
JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY - 2014
SP - 793
EP - 814
VL - 54
IS - 5
UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a7/
LA - ru
ID - ZVMMF_2014_54_5_a7
ER -
%0 Journal Article
%A S. A. Nazarov
%T Asymptotics of eigenvalues of the Dirichlet problem in a skewed $\mathcal{T}$-shaped waveguide
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 793-814
%V 54
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a7/
%G ru
%F ZVMMF_2014_54_5_a7
S. A. Nazarov. Asymptotics of eigenvalues of the Dirichlet problem in a skewed $\mathcal{T}$-shaped waveguide. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5, pp. 793-814. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a7/
[1] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR
[2] Nazarov S. A., “Lokalizovannye volny v $\mathrm{T}$-obraznom volnovode”, Akusticheskii zhurnal, 56:6 (2010), 747–758
[3] Nazarov S. A., Shanin A. V., “Raschet kharakteristik zakhvachennykh voln v $\mathrm{T}$-obraznykh volnovodakh”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 104–119 | MR
[4] Nazarov S. A., Shanin A. V., “Trapped modes in angular joints of 2D waveguides”, Applicable Analysis, 2013 | DOI
[5] Dauge M., Raymond N., “Plane waveguides with corners in the small angle limit”, J. Math. Phys., 53 (2012) | DOI
[6] Mazya V. G., Nazarov S. A., “Paradoksy predelnogo perekhoda v resheniyakh kraevykh zadach pri approksimatsii gladkikh oblastei mnogougolnymi”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1156–1177 | MR
[7] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, v. 1, 2, Birkhauser Verlag, Basel, 2000 | MR
[8] Nazarov S. A., “Okolovershinnaya lokalizatsiya sobstvennykh funktsii zadachi Dirikhle v tonkikh mnogogrannikakh”, Sibirsk. matem. zh., 54:3 (2013), 655–672 | MR
[9] Babich V. M., Buldyrev V. S., Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR
[10] Nazarov S. A., Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2001
[11] Nazarov S. A., “Ravnomernye otsenki ostatkov v asimptoticheskikh razlozheniyakh reshenii zadachi o sobstvennykh kolebaniyakh pezoelektricheskoi plastiny”, Problemy matem. analiza, 25, Nauchn. kniga, Novosibirsk, 2003, 99–188
[12] Jones D. S., “The eigenvalues of $\nabla^2u+\lambda u=0$ when the boundary conditions are given on semi-infinite domains”, Proc. Camb. Phil. Soc., 49 (1953), 668–684 | DOI | MR
[13] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[14] Nazarov S. A., “Asimptotika sobstvennykh chisel na nepreryvnom spektre regulyarno vozmuschennogo kvantovogo volnovoda”, Teor. i matem. fiz., 167:2 (2011), 239–262 | DOI
[15] Nazarov S. A., “Variatsionnyi i asimptoticheskii metody poiska sobstvennykh chisel pod porogom nepreryvnogo spektra”, Sibirsk. matem. zh., 51:5 (2010), 1086–1101 | MR
[16] Griser D., “Spectra of graph neighborhoods and scattering”, Proc. London Math. Soc., 97:3 (2008), 718–752 | DOI | MR
[17] Friedlander L., Solomyak M., “On the spectrum of narrow periodic waveguides”, Russ. J. Math. Phys., 15:2 (2008), 238–242 | DOI | MR
[18] Friedlander L., Solomyak M., “On the spectrum of the Dirichlet Laplacian in a narrow strip”, Israel J. Math., 170 (2009), 337–354 | DOI | MR
[19] Borisov D., Freitas P., “Singular asymptotic expansions for Dirichlet eigenvalues and eigenfunctions on thin planar domains”, Annales de l'institut Henri Poincare (C) Analyse non-lineaire, 26:2 (2009), 547–560 | DOI | MR
[20] Borisov D., Freitas P., “Asymptotics of Dirichlet eigenvalues and eigenfunctions of the Laplacian on thin domains in $\mathbb{R}^d$”, J. Funct. Anal., 258:3 (2010), 893–912 | DOI | MR
[21] Nazarov S. A., “Spektralnye svoistva tonkogo sloya s dvoyakoperiodicheskim semeistvom istonchenii”, Teor. i matem. fiz., 174:3 (2013), 398–415 | DOI
[22] Nazarov S. A., “Asimptotika lovushechnykh mod i sobstvennykh chisel pod porogom nepreryvnogo spektra volnovoda s tonkim ekraniruyuschim prepyatstviem”, Algebra i analiz, 23:3 (2011), 216–260 | MR
[23] Cardone G., Durante T., Nazarov S. A., “The localization effect for eigenfunctions of the mixed boundary value problem in a thin cylinder with distorted ends”, SIAM J. Math. Anal., 42:6 (2010), 2581–2609 | DOI | MR
[24] Nazarov S. A., “Estimating the convergence rate for eigenfrequencies of anisotropic plates with variable thickness”, C.R. Mecanique, 330 (2002), 603–607 | DOI
[25] Lobo M., Nazarov S. A., Perez E., “Eigen-oscillations of contrasting non-homogeneous bodies: asymptotic ana uniform estimates fox eigenvalues”, IMA J. of Appl. Math., 70 (2005), 419–458 | DOI | MR
[26] Zorin I. S., Nazarov S. A., “Kraevoi effekt pri izgibe tonkoi trekhmernoi plastiny”, Prikl. matem. i mekhan., 53:4 (1989), 642–650 | MR
[27] Nazarov S. A., “Dvuchlennaya asimptotika reshenii spektralnykh zadach s singulyarnymi vozmuscheniyami”, Matem. sbornik, 181:3 (1990), 291–320 | MR
[28] Birman M. Sh., Skvortsov G. E., “O kvadratichnoi summiruemosti starshikh proizvodnykh resheniya zadachi Dirikhle v oblasti s kusochno gladkoi granitsei”, Izv. vyssh. uchebn. zavedenii. Matem., 1962, no. 5, 11–21 | MR