Dynamics of the logistic delay equation with a large spatially distributed control coefficient
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5, pp. 766-778 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The local dynamics of the logistic delay equation with a large spatially distributed control coefficient is asymptotically studied. The basic bifurcation scenarios are analyzed depending on the relations between the parameters of the equation. It is shown that the equilibrium states can lose stability even for asymptotically small values of the delay parameter. The corresponding critical cases can have an infinite dimension. Special nonlinear parabolic equations are constructed whose nonlocal dynamics determine the local behavior of solutions to the original boundary value problem.
@article{ZVMMF_2014_54_5_a5,
     author = {I. S. Kashchenko and S. A. Kashchenko},
     title = {Dynamics of the logistic delay equation with a large spatially distributed control coefficient},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {766--778},
     year = {2014},
     volume = {54},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a5/}
}
TY  - JOUR
AU  - I. S. Kashchenko
AU  - S. A. Kashchenko
TI  - Dynamics of the logistic delay equation with a large spatially distributed control coefficient
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 766
EP  - 778
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a5/
LA  - ru
ID  - ZVMMF_2014_54_5_a5
ER  - 
%0 Journal Article
%A I. S. Kashchenko
%A S. A. Kashchenko
%T Dynamics of the logistic delay equation with a large spatially distributed control coefficient
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 766-778
%V 54
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a5/
%G ru
%F ZVMMF_2014_54_5_a5
I. S. Kashchenko; S. A. Kashchenko. Dynamics of the logistic delay equation with a large spatially distributed control coefficient. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5, pp. 766-778. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a5/

[1] Wu J., Theory and applications of partial functional differential equations theory and applications of partial functional differential equations, Springer, Berlin, 1996 | MR

[2] Arino O. et al. (eds.), Delay differential equations and applications, Springer, Berlin, 2006 | MR

[3] Kaschenko S. A., “Asimptotika periodicheskogo resheniya obobschennogo uravneniya Khatchinsona”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1981

[4] Kaschenko S. A., “Asimptotika reshenii obobschennogo uravneniya Khatchinsona”, Modelirovanie i analiz informatsionnykh sistem, 19:3 (2012), 32–62

[5] Kakutani S., Markus L., “On the non-linear difference-differential equation $y'(t)=(a-by(t-\tau))y(t)$. Contributions to the theory of non-linear oscillations”, Ann. Math. Stud., IV, Princeton University Press, Princeton, 1958, 1–18 | MR

[6] Kaschenko S. A., “Ob ustanovivshikhsya rezhimakh uravneniya Khatchinsona s diffuziei”, Dokl. AN SSSR, 292:2 (1987), 327–330 | MR

[7] Kuramoto Y., Battogtokh D., “Coexisting of coherence and incoherence in nonlocally coupled phase oscillators”, Nonlinear Phenomena in Complex Systems, 5:4 (2002), 380–385

[8] Kaschenko I. S., Kaschenko S. A., “Dinamika uravneniya s bolshim prostranstvenno-raspredelennym upravleniem”, Dokl. AN, 438:1 (2011), 30–34

[9] Kaschenko S. A., “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Dokl. AN SSSR, 299:5 (1988), 1049–1053

[10] Kaschenko S. A., “Normalization in the systems with small diffusion”, Internat. J. Bifurcations and Chaos, 6:7 (1996), 1093–1109 | DOI | MR

[11] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[12] Kaschenko I. S., “Multistabilnost v nelineinykh parabolicheskikh sistemakh s maloi diffuziei”, Dokl. AN, 435:2 (2010), 164–167 | MR

[13] Kaschenko S. A., “Uravneniya Ginzburga–Landau — normalnaya forma dlya differentsialno-raznostnogo uravneniya vtorogo poryadka s bolshim zapazdyvaniem”, Zh. vychisl. matem. i matem. fiz., 38:3 (1998), 457–465 | MR