@article{ZVMMF_2014_54_5_a5,
author = {I. S. Kashchenko and S. A. Kashchenko},
title = {Dynamics of the logistic delay equation with a large spatially distributed control coefficient},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {766--778},
year = {2014},
volume = {54},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a5/}
}
TY - JOUR AU - I. S. Kashchenko AU - S. A. Kashchenko TI - Dynamics of the logistic delay equation with a large spatially distributed control coefficient JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 766 EP - 778 VL - 54 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a5/ LA - ru ID - ZVMMF_2014_54_5_a5 ER -
%0 Journal Article %A I. S. Kashchenko %A S. A. Kashchenko %T Dynamics of the logistic delay equation with a large spatially distributed control coefficient %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 766-778 %V 54 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a5/ %G ru %F ZVMMF_2014_54_5_a5
I. S. Kashchenko; S. A. Kashchenko. Dynamics of the logistic delay equation with a large spatially distributed control coefficient. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5, pp. 766-778. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a5/
[1] Wu J., Theory and applications of partial functional differential equations theory and applications of partial functional differential equations, Springer, Berlin, 1996 | MR
[2] Arino O. et al. (eds.), Delay differential equations and applications, Springer, Berlin, 2006 | MR
[3] Kaschenko S. A., “Asimptotika periodicheskogo resheniya obobschennogo uravneniya Khatchinsona”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1981
[4] Kaschenko S. A., “Asimptotika reshenii obobschennogo uravneniya Khatchinsona”, Modelirovanie i analiz informatsionnykh sistem, 19:3 (2012), 32–62
[5] Kakutani S., Markus L., “On the non-linear difference-differential equation $y'(t)=(a-by(t-\tau))y(t)$. Contributions to the theory of non-linear oscillations”, Ann. Math. Stud., IV, Princeton University Press, Princeton, 1958, 1–18 | MR
[6] Kaschenko S. A., “Ob ustanovivshikhsya rezhimakh uravneniya Khatchinsona s diffuziei”, Dokl. AN SSSR, 292:2 (1987), 327–330 | MR
[7] Kuramoto Y., Battogtokh D., “Coexisting of coherence and incoherence in nonlocally coupled phase oscillators”, Nonlinear Phenomena in Complex Systems, 5:4 (2002), 380–385
[8] Kaschenko I. S., Kaschenko S. A., “Dinamika uravneniya s bolshim prostranstvenno-raspredelennym upravleniem”, Dokl. AN, 438:1 (2011), 30–34
[9] Kaschenko S. A., “O kvazinormalnykh formakh dlya parabolicheskikh uravnenii s maloi diffuziei”, Dokl. AN SSSR, 299:5 (1988), 1049–1053
[10] Kaschenko S. A., “Normalization in the systems with small diffusion”, Internat. J. Bifurcations and Chaos, 6:7 (1996), 1093–1109 | DOI | MR
[11] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR
[12] Kaschenko I. S., “Multistabilnost v nelineinykh parabolicheskikh sistemakh s maloi diffuziei”, Dokl. AN, 435:2 (2010), 164–167 | MR
[13] Kaschenko S. A., “Uravneniya Ginzburga–Landau — normalnaya forma dlya differentsialno-raznostnogo uravneniya vtorogo poryadka s bolshim zapazdyvaniem”, Zh. vychisl. matem. i matem. fiz., 38:3 (1998), 457–465 | MR