@article{ZVMMF_2014_54_5_a4,
author = {L. M. Skvortsov},
title = {Singly implicit diagonally extended {Runge{\textendash}Kutta} methods of fourth order},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {755--765},
year = {2014},
volume = {54},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a4/}
}
TY - JOUR AU - L. M. Skvortsov TI - Singly implicit diagonally extended Runge–Kutta methods of fourth order JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 755 EP - 765 VL - 54 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a4/ LA - ru ID - ZVMMF_2014_54_5_a4 ER -
L. M. Skvortsov. Singly implicit diagonally extended Runge–Kutta methods of fourth order. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5, pp. 755-765. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a4/
[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999
[2] Alexander R., “Diagonally implicit Runge–Kutta methods for stiff O.D.E.'s”, SIAM J. Numer. Analys., 14:6 (1977), 1006–1021 | DOI | MR
[3] Skvortsov L. M., “Diagonalno-neyavnye metody Runge–Kutty dlya zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2209–2222 | MR
[4] Skvortsov L. M., “Diagonalno-neyavnye metody Runge–Kutty dlya differentsialno-algebraicheskikh uravnenii indeksov 2 i 3”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 1047–1059 | MR
[5] Skvortsov L. M., “Diagonalno neyavnye FSAL-metody Runge–Kutty dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Matem. modelirovanie, 14:2 (2002), 3–17 | MR
[6] Kværnø A., “Singly diagonally implicit Runge–Kutta methods with an explicit first stage”, BIT, 44:3 (2004), 489–502 | DOI | MR
[7] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR
[8] Butcher J. C., Cash J. R., Diamantakis M. T., “DESI methods for stiff initial-value problems”, ACM Trans. Math. Software, 22:4 (1996), 401–422 | DOI | MR
[9] Butcher J. C., Chen D. J. L., “A new type of singly implicit Runge–Kutta methods”, Appl. Numer. Math., 34:2–3 (2000), 179–188 | DOI | MR
[10] Skvortsov L. M., “Modelnye uravneniya dlya issledovaniya tochnosti metodov Runge–Kutty”, Matem. modelirovanie, 22:5 (2010), 146–160 | MR
[11] Hosea M. E., Shampine L. F., “Analysis and implementation of TR-BDF2”, Appl. Numer. Math., 20:1–2 (1996), 21–37 | DOI | MR
[12] Skvortsov L. M., “Ekonomichnaya skhema realizatsii neyavnykh metodov Runge–Kutty”, Zh. vychisl. matem. i matem. fiz., 48:11 (2008), 2008–2018 | MR
[13] Jay L., “Convergence of a class of Runge–Kutta methods for differential-algebraic systems of index 2”, BIT, 33:1 (1993), 137–150 | DOI | MR
[14] Jay L., “Convergence of Runge–Kutta methods for differential-algebraic systems of index 3”, Appl. Numer. Math., 17:2 (1995), 97–118 | DOI | MR
[15] http://web.math.unifi.it/users/brugnano/BiM/BiMD/index_BiMD.htm