Singly implicit diagonally extended Runge–Kutta methods of fourth order
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5, pp. 755-765 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Singly implicit diagonally extended Runge–Kutta methods make it possible to combine the merits of diagonally implicit methods (namely, the simplicity of implementation) and fully implicit ones (high stage order). Due to this combination, they can be very efficient at solving stiff and differential-algebraic problems. In this paper, fourth-order methods with an explicit first stage are examined. The methods have the third or fourth stage order. Consideration is given to an efficient implementation of these methods. The results of tests in which the proposed methods were compared with the fifth-order RADAU IIA method are presented.
@article{ZVMMF_2014_54_5_a4,
     author = {L. M. Skvortsov},
     title = {Singly implicit diagonally extended {Runge{\textendash}Kutta} methods of fourth order},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {755--765},
     year = {2014},
     volume = {54},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a4/}
}
TY  - JOUR
AU  - L. M. Skvortsov
TI  - Singly implicit diagonally extended Runge–Kutta methods of fourth order
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 755
EP  - 765
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a4/
LA  - ru
ID  - ZVMMF_2014_54_5_a4
ER  - 
%0 Journal Article
%A L. M. Skvortsov
%T Singly implicit diagonally extended Runge–Kutta methods of fourth order
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 755-765
%V 54
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a4/
%G ru
%F ZVMMF_2014_54_5_a4
L. M. Skvortsov. Singly implicit diagonally extended Runge–Kutta methods of fourth order. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5, pp. 755-765. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a4/

[1] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[2] Alexander R., “Diagonally implicit Runge–Kutta methods for stiff O.D.E.'s”, SIAM J. Numer. Analys., 14:6 (1977), 1006–1021 | DOI | MR

[3] Skvortsov L. M., “Diagonalno-neyavnye metody Runge–Kutty dlya zhestkikh zadach”, Zh. vychisl. matem. i matem. fiz., 46:12 (2006), 2209–2222 | MR

[4] Skvortsov L. M., “Diagonalno-neyavnye metody Runge–Kutty dlya differentsialno-algebraicheskikh uravnenii indeksov 2 i 3”, Zh. vychisl. matem. i matem. fiz., 50:6 (2010), 1047–1059 | MR

[5] Skvortsov L. M., “Diagonalno neyavnye FSAL-metody Runge–Kutty dlya zhestkikh i differentsialno-algebraicheskikh sistem”, Matem. modelirovanie, 14:2 (2002), 3–17 | MR

[6] Kværnø A., “Singly diagonally implicit Runge–Kutta methods with an explicit first stage”, BIT, 44:3 (2004), 489–502 | DOI | MR

[7] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR

[8] Butcher J. C., Cash J. R., Diamantakis M. T., “DESI methods for stiff initial-value problems”, ACM Trans. Math. Software, 22:4 (1996), 401–422 | DOI | MR

[9] Butcher J. C., Chen D. J. L., “A new type of singly implicit Runge–Kutta methods”, Appl. Numer. Math., 34:2–3 (2000), 179–188 | DOI | MR

[10] Skvortsov L. M., “Modelnye uravneniya dlya issledovaniya tochnosti metodov Runge–Kutty”, Matem. modelirovanie, 22:5 (2010), 146–160 | MR

[11] Hosea M. E., Shampine L. F., “Analysis and implementation of TR-BDF2”, Appl. Numer. Math., 20:1–2 (1996), 21–37 | DOI | MR

[12] Skvortsov L. M., “Ekonomichnaya skhema realizatsii neyavnykh metodov Runge–Kutty”, Zh. vychisl. matem. i matem. fiz., 48:11 (2008), 2008–2018 | MR

[13] Jay L., “Convergence of a class of Runge–Kutta methods for differential-algebraic systems of index 2”, BIT, 33:1 (1993), 137–150 | DOI | MR

[14] Jay L., “Convergence of Runge–Kutta methods for differential-algebraic systems of index 3”, Appl. Numer. Math., 17:2 (1995), 97–118 | DOI | MR

[15] http://web.math.unifi.it/users/brugnano/BiM/BiMD/index_BiMD.htm