@article{ZVMMF_2014_54_5_a3,
author = {S. I. Khashin},
title = {Estimating the error in the classical {Runge{\textendash}Kutta} methods},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {746--754},
year = {2014},
volume = {54},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a3/}
}
S. I. Khashin. Estimating the error in the classical Runge–Kutta methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5, pp. 746-754. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a3/
[1] Butcher J. C., Numerical methods for ordinary differential equations, 2nd ed., John Wiley, New York, 2008 | MR
[2] Wanner G., Hairer E., Nørsett S. P., Solving ordinary differential equations, v. I, Nonstiff Problems, 2Ed., Springer, Berlin, 2000
[3] Jackiewicz Z., Verner J. H., “Derivation and implementation of two-step Runge–Kutta pairs”, Appl. Math., 19 (2002), 227–248 | MR
[4] Verner J. H., “Numerically optimal Runge–Kutta pairs with interpolants”, Numerical Algorith., 53 (2010), 383–396 | DOI | MR
[5] Jackiewicz Z., General Linear Methods for Ordinary Differential Equations, Wiley, New York, 2009 | MR
[6] Chan T. M. H., Butcher J. C., “Multi-step zero approximations for stepsize control”, Appl. Numer. Math., 34 (2000), 167–177 | DOI | MR
[7] Shampine L. F., Watts H. A., “Comparing Error Estimators for Runge–Kutta methods”, Math. Comp., 25 (1971), 445–455 | DOI | MR