Three-dimensional simulation of the runup of nonlinear surface gravity waves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5, pp. 871-886 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The runup of nonlinear surface gravity waves is numerically simulated in two and three dimensions on the basis of the Navier–Stokes equations. The three-dimensional problem is formulated, and the boundary and initial conditions are described. The splitting method over physical processes is used to construct a discrete model taking into account the cell occupation coefficient. The runup of nonlinear surface gravity waves is simulated in two dimensions for slopes of various geometries, and the numerical results are analyzed. The structural features of the simulated three-dimensional basin are described. Three-dimensional models for the staged runup of nonlinear surface gravity waves breaking on coastal slopes in shallow water areas are considered.
@article{ZVMMF_2014_54_5_a13,
     author = {I. B. Abbasov},
     title = {Three-dimensional simulation of the runup of nonlinear surface gravity waves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {871--886},
     year = {2014},
     volume = {54},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a13/}
}
TY  - JOUR
AU  - I. B. Abbasov
TI  - Three-dimensional simulation of the runup of nonlinear surface gravity waves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 871
EP  - 886
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a13/
LA  - ru
ID  - ZVMMF_2014_54_5_a13
ER  - 
%0 Journal Article
%A I. B. Abbasov
%T Three-dimensional simulation of the runup of nonlinear surface gravity waves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 871-886
%V 54
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a13/
%G ru
%F ZVMMF_2014_54_5_a13
I. B. Abbasov. Three-dimensional simulation of the runup of nonlinear surface gravity waves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5, pp. 871-886. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a13/

[1] Watanabe Y., Saeki H., “Three dimensional large eddy simulation of breaking waves”, Coast. Engng. J., 41:3-4 (1999), 281–301 | DOI

[2] Lubin P., Vincent S., Abadie S., Caltagirone J.-P., “Three-dimensional large eddy simulation of air entrainment under plunging breaking waves”, Coastal Engng. J., 53 (2006), 631–655 | DOI

[3] Fedotova Z. I., “Obosnovanie chislennogo metoda dlya modelirovaniya nakata dlinnykh voln na bereg”, Vychisl. tekhnologii, 7:5 (2002), 58–76 | MR

[4] Borisova N. M., “O modelirovanii protsessa nabeganiya preryvnoi volny na naklonnyi bereg”, Sib. zhurnal vychisl. matem., 10:1 (2007), 1–18

[5] Delis A. I., Kazolea M., Kampanis N. A., “A robust high resolution finite volume scheme for the simulation of long waves over complex domains”, Int. J. Num. Meth. In Fluids, 56 (2008), 419–452 | DOI | MR

[6] Ting F. C. K., Kirby J. T., “Dynamics of surf-zone turbulence in a spilling breaker”, Coastal Engng., 27 (1996), 131–160 | DOI

[7] Kimmoun O., Branger H., “A PIV investigation on laboratory surf-zone breaking waves over a sloping beach”, J. Fluid Mech., 588 (2007), 353–397 | DOI | MR

[8] Abbasov I. B., “Numerical simulation of nonlinear surface gravity waves transformation under shallow-water conditions”, Appl. Math., 3:2 (2012), 135–141 | DOI | MR

[9] Abbasov I. B., Sukhinov A. I., Chistyakov A. E., “Chislennoe modelirovanie nakata nelineinykh poverkhnostnykh gravitatsionnykh voln na osnove uravneniya Nave–Stoksa”, Sovremennye probl. matem. modelirovaniya, XIV Vseros. konferentsiya-shkola s mezhdunar. uchastiem, Sb. trudov (Abrau-Dyurso, 12–17 sentyabrya 2011 g.), Izd-vo YuFU, Rostov na-Donu, 2011, 10–15

[10] Abbasov I. B., Semenov I. S., Tsarevskii V. V., “Chislennoe modelirovanie nakata nelineinykh poverkhnostnykh gravitatsionnykh voln na pologie beregovye sklony”, Izvestiya YuFU. Tekhn. nauki, 2012, no. 6, 19–22

[11] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980, 612 pp.

[12] Fletcher K., Vychislitelnye metody v dinamike zhidkostei, v 2 t., v. 2, Mir, M., 1991, 552 pp. | MR

[13] Harlow F. H., Welch J. E., “Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface”, Phys. Fluid, 8:12 (1965), 2182–2189 | DOI

[14] Belotserkovskii O. M., Guschin V. A., Konshin V. N., “Metod rasschepleniya dlya issledovaniya techenii stratifitsirovannoi zhidkosti so svobodnoi poverkhnostyu”, Zh. vychisl. matem. i matem. fiz., 27:4 (1987), 594–609 | MR

[15] Sukhinov A. I., Timofeeva E. F., Chistyakov A. E., “Postroenie i issledovanie diskretnoi matematicheskoi modeli rascheta pribrezhnykh volnovykh protsessov”, Izvestiya YuFU. Tekhn. nauki, 121:8 (2011), 22–32

[16] Samarskii A. A., Vvedenie v chislennye metody, Ucheb. posobie dlya vuzov, Nauka, M., 1987 | MR

[17] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, BINOM. Laboratoriya znanii, M., 2006

[18] Abbasov I. B., Semenov I. S., Tsarevskii V. V., Programma trekhmernogo modelirovaniya nakata poverkhnostnykh voln na melkovode “3DBayWaves”, a.s. No 2012617087 o gos. reg. progr. dlya EVM, zayavl. 22.05.2012 g., opubl. 08.08.2012 g.

[19] Abbasov I. B., Semenov I. S., Tsarevskii V. V., Programma dvumernogo modelirovaniya nakata poverkhnostnykh voln na melkovode “2DBayWaves”, a.s. No 2012616206 o gos. reg. progr. dlya EVM, zayavl. 22.05.2012 g., opubl. 06.07.2012 g.

[20] N. P. Goptarev i dr. (red.), Gidrometeorologiya i gidrokhimiya morei SSSR. Proekt “Morya SSSR”, v. V, Azovskoe more, Gidrometeoizdat, SPb., 1991, 75–88

[21] Mamykina V. A., Khrustalev Yu. P., Beregovaya zona Azovskogo morya, Izd-vo RGU, Rostov-na-Donu, 1980, 176 pp.

[22] Debolskii V. K., Zaidler R., Massel S., Dinamika ruslovykh potokov i litodinamika pribrezhnoi zony morya, Nauka, M., 1994, 303 pp.

[23] Zhao Q., Armfield S., Tanimoto K., “Numerical simulation of breaking waves by a multi-scale turbulence model”, Coastal Engng J., 51 (2004), 53–80 | DOI

[24] Abbasov I. B., “Modelirovanie nelineinykh poverkhnostnykh gravitatsionnykh voln na melkoi vode s uchetom dispersii”, Dokl. AN, 429:6 (2009), 825–827

[25] SNiP 33-01-2003 “Gidrotekhnicheskie sooruzheniya”, Gosstroi Rossii, M., 2004

[26] Smirnova T. G., Pravdivets Yu. P., Smirnov G. N., Beregozaschitnye sooruzheniya, Ucheb. dlya vuzov, Izd-vo ASV, M., 2002