Solvability of an integrodifferential equation arising in the nonlocal interaction of waves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5, pp. 834-844 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solvability of an integrodifferential equation arising in the problem of nonlocal wave interaction is analyzed. A mathematically substantiated method based on applying an Ambartsumyan-type equation is proposed for the analytical solution of the problem. Some numerical results are presented.
@article{ZVMMF_2014_54_5_a11,
     author = {N. B. Engibaryan and A. Kh. Khachatryan},
     title = {Solvability of an integrodifferential equation arising in the nonlocal interaction of waves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {834--844},
     year = {2014},
     volume = {54},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a11/}
}
TY  - JOUR
AU  - N. B. Engibaryan
AU  - A. Kh. Khachatryan
TI  - Solvability of an integrodifferential equation arising in the nonlocal interaction of waves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 834
EP  - 844
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a11/
LA  - ru
ID  - ZVMMF_2014_54_5_a11
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%A A. Kh. Khachatryan
%T Solvability of an integrodifferential equation arising in the nonlocal interaction of waves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 834-844
%V 54
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a11/
%G ru
%F ZVMMF_2014_54_5_a11
N. B. Engibaryan; A. Kh. Khachatryan. Solvability of an integrodifferential equation arising in the nonlocal interaction of waves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5, pp. 834-844. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a11/

[1] Baraff G. A., “Transmission of electromagnetic waves through a conduction slab. 1: The two-sided Wiener–Hopf solution”, J. Math. Phys., 9:3 (1968), 372–384 | DOI

[2] Baraff G. A., “Transmission of electromagnetic waves through a conducting slab. 2: The peak at cyclotron resonance”, Phys. Rev., 167:3 (1968), 625–636 | DOI

[3] Lifshits E. M., Pitaevskii L. P., Fizicheskaya kinetika, v. 10, Nauka, M., 1979 | MR

[4] Latyshev A. V., Yushkanov A. A., “Reshenie zadachi o skin-effekte s proizvolnym koeffitsientom zerkalnosti”, Zh. vychisl. matem. i matem. fiz., 49:1 (2009), 137–151 | MR

[5] Latyshev A. V., Yushkanov A. A., “Novyi metod resheniya granichnykh zadach fizicheskoi kinetiki”, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 539–552

[6] Latyshev A. V., Yushkanov A. A., “Nevyrozhdennaya plazma s diffuznym usloviem na granitse v vysokochastotnom elektricheskom pole vblizi rezonansa”, Zh. vychisl. matem. i matem. fiz., 47:1 (2007), 121–128 | MR

[7] Engibaryan N. B., Khachatryan A. Kh., “Integro-differentsialnoe uravnenie nelokalnogo vzaimodeistviya voln”, Matem. sb., 198:6 (2007), 89–106 | DOI | MR

[8] Casti J., Kalaba R., Imbedding methods in applied mathematics, Addison-Wesley, Reading, MA, 1973 | MR

[9] Khachatryan Kh. A., “Razreshimost odnogo klassa integro-differentsialnykh uravnenii vtorogo poryadka s monotonnoi nelineinostyu na poluosi”, Izv. RAN. Ser. matem., 74:5 (2010), 191–204 | DOI | MR

[10] Arabadzhyan L. G., Engibaryan N. B., “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhn. Ser. Matem. analiza, 22, VINITI, M., 1984, 175–244 | MR

[11] Engibaryan N. B., Engibaryan B. N., “Integralnoe uravnenie svertki na polupryamoi s vpolne monotonnym yadrom”, Matem. sb., 187:10 (1996), 53–72 | DOI | MR

[12] Cahlon B., Eskin M., “Existence theorems for an integral equation of the Chandrasekhar $H$-equation with perturbation”, J. Math. Anal. Appl., 83:1 (1981), 159–171 | DOI | MR