@article{ZVMMF_2014_54_5_a10,
author = {M. Goyal and R. Bhargava},
title = {Finite element solution of double-diffusive boundary layer flow of viscoelastic nanofluids over a stretching sheet},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {833},
year = {2014},
volume = {54},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a10/}
}
TY - JOUR AU - M. Goyal AU - R. Bhargava TI - Finite element solution of double-diffusive boundary layer flow of viscoelastic nanofluids over a stretching sheet JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 833 VL - 54 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a10/ LA - en ID - ZVMMF_2014_54_5_a10 ER -
%0 Journal Article %A M. Goyal %A R. Bhargava %T Finite element solution of double-diffusive boundary layer flow of viscoelastic nanofluids over a stretching sheet %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 833 %V 54 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a10/ %G en %F ZVMMF_2014_54_5_a10
M. Goyal; R. Bhargava. Finite element solution of double-diffusive boundary layer flow of viscoelastic nanofluids over a stretching sheet. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a10/
[1] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke, “Anomalously thermal conductivity enhancement in nanotube suspensions”, Appl. Phys. Lett., 79 (2001), 2252–2254 | DOI
[2] H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultrafine particles”, Netsu Bussei, 7 (1993), 227–233 | DOI | MR
[3] S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles”, Developments and applications of non-Newtonian flows, 1995, 99–105
[4] J. Buongiorno, “Convective transport in nanofluids”, ASME J. Heat Transfer, 128 (2006), 240–250 | DOI
[5] W. A. Khan, I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet”, Int. J. Heat Mass Transfer, 53 (2010), 2477–2483 | DOI
[6] A. V. Kuznetsov, D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate”, Int. J. Therm. Sci., 49 (2010), 243–247 | DOI
[7] O. Makinde, A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition”, Int. J. Therm. Sci., 50 (2011), 1326–1332 | DOI
[8] P. D. McCormack, L. J. Crane, Physical Fluid Dynamics, Academic, New York, 1973
[9] P. S. Gupta, A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing”, Can J. Chem. Eng., 55 (1977), 744–746 | DOI
[10] B. K. Dutta, P. Roy, A. S. Gupta, “Temperature field in the flow over a stretching sheet with uniform heat flux”, Int. Commun. Heat Mass Transfer, 12 (1985), 89–94 | DOI
[11] C. K. Chen, M. I. Char, “Heat transfer of a continuous stretching surface with suction or blowing”, J. Math. Anal. Appl., 135 (1988), 568–580 | DOI | MR
[12] K. R. Rajagopal, T. Y. Na, A. S. Gupta, “Flow of a viscoelastic fluid over a stretching sheet”, Rheol. Acta, 23 (1984), 213–221 | DOI
[13] W. D. Chang, “The nonuniqueness of the flow of a viscoelastic fluid over a stretching sheet”, Q. Appl. Math., 47 (1989), 365–366 | MR
[14] I. Pop, D. B. Ingham, Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media, Elsevier, Oxford, 2001
[15] E. R. G. Eckert, R. M. Drake, Analysis of Heat and Mass Transfer, McGraw-Hill, New York, 1972
[16] M. S. Alam, M. M. Rahman, “Dufour and Soret effects on MHD free convective heat and mass transfer flow past a vertical porous flat plate embedded in a porous medium”, J. Naval Architect. Marine Eng., 2:1 (2005), 55–65
[17] A. J. Chamkha, A. Ben-Nakhi, “MHD mixed convection-radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour's Effects”, Heat Mass Transfer, 44 (2008), 845–856 | DOI
[18] M. A. Mansour, N. F. El-Anssary, A. M. Aly, “Effects of chemical reaction and thermal stratification on MHD free convective heat and mass transfer over a vertical stretching surface embedded in a porous media considering Soret and Dufour numbers”, Chem. Eng. J., 145 (2008), 340–345 | DOI
[19] R. Tsai, J. S. Huang, “Heat and mass transfer for Soret and Dufour's effects on Hiemenz flow through porous medium onto a stretching surface”, Int. J. Heat Mass Transfer, 52 (2009), 2399–2406 | DOI
[20] O. A. Bég, A. Y. Bakier, V. R. Prasad, “Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects”, Comput. Mater. Sci., 46 (2009), 57–65 | DOI
[21] A. V. Kuznetsov, D. A. Nield, “Double-diffusive natural convective boundary layer flow of a nanofluid past a vertical surface”, Int. J. Thermal Sci., 50 (2011), 712–717 | DOI
[22] W. A. Khan, A. Aziz, “Double-diffusive natural convective boundary layer flow in a porous medium saturated with a nanofluid over a vertical plate: Prescribed surface heat, solutal and nanoparticle fluxes”, Int. J. Thermal Sci., 50 (2011), 2154–2160 | DOI
[23] W. A. Khan, M. J. Uddin, A. I. Md Ismail, “Effect of momentum slip on double-diffusive free convective boundary layer flow of a nanofluid past a convectively heated vertical plate”, J. Nanoeng. Nanosyst., 226:3 (2012), 99–109
[24] F. G. Awad, P. Sibanda, A. A. Khidir, “Thermodiffusion effects on magneto-nanofluid flow over a stretching sheet, boundary value problem”, 2013 | DOI | MR
[25] R. Bhargava, P. Rana, “Finite element solution to mixed convection in MHD flow of micropolar fluid along a moving vertical cylinder with variable conductivity”, Int. J. Appl. Math. Mech., 7 (2011), 29–51
[26] Y. Y. Lin, S. P. Lo, “Finite element modeling for chemical mechanical polishing process under different back pressures”, J. Mat. Proc. Tech., 140 (2003), 646–652 | DOI
[27] W. Dettmer, D. Peric, “A computational framework for fluid-rigid body interaction: Finite element formulation and applications”, Comput. Methods Appl. Mech. Eng., 195 (2006), 1633–1666 | DOI | MR
[28] A. Hansbo, P. Hansbo, “A finite element method for the simulation of strong and weak discontinuities in solid mechanics”, Comput. Methods Appl. Mech. Eng., 139 (2004), 3523–3540 | DOI | MR
[29] C. Y. Wang, “Free convection on a vertical stretching surface”, J. Appl. Math. Mech. (ZAMM), 69 (1989), 418–420 | DOI
[30] R. S. R. Gorla, I. Sidawi, “Free convection on a vertical stretching surface with suction and blowing”, Appl. Sci. Res., 52 (1994), 247–257 | DOI
[31] D. A. Nield, A. V. Kuznetsov, “The Cheng–Minkowycz problem for the double diffusive natural convective boundary layer flow in a porous medium saturated with a nanofluid”, Int. J. Heat Mass Transfer, 54 (2011), 374–378 | DOI