Finite element solution of double-diffusive boundary layer flow of viscoelastic nanofluids over a stretching sheet
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with the double-diffusive boundary layer flow of non-Newtonian nanofluid over a stretching sheet. In this model, where binary nanofluid is used, the Brownian motion and thermophoresis are classified as the main mechanisms which are responsible for the enhancement of the convection features of the nanofluid. The boundary layer equations governed by the partial differential equations are transformed into a set of ordinary differential equations with the help of group theory transformations. The variational finite element method (FEM) is used to solve these ordinary differential equations. We have examined the effects of different controlling parameters, namely, the Brownian motion parameter, the thermophoresis parameter, modified Dufour number, viscoelastic parameter, Prandtl number, regular Lewis number, Dufour Lewis number, and nanofluid Lewis number on the flow field and heat transfer characteristics. Graphical display of the numerical examine are performed to illustrate the influence of various flow parameters on the velocity, temperature, concentration, reduced Nusselt, reduced Sherwood and reduced nanofluid Sherwood number distributions. The present study has many applications in coating and suspensions, movement of biological fluids, cooling of metallic plate, melt-spinning, heat exchangers technology, and oceanography.
@article{ZVMMF_2014_54_5_a10,
     author = {M. Goyal and R. Bhargava},
     title = {Finite element solution of double-diffusive boundary layer flow of viscoelastic nanofluids over a stretching sheet},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {833},
     year = {2014},
     volume = {54},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a10/}
}
TY  - JOUR
AU  - M. Goyal
AU  - R. Bhargava
TI  - Finite element solution of double-diffusive boundary layer flow of viscoelastic nanofluids over a stretching sheet
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 833
VL  - 54
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a10/
LA  - en
ID  - ZVMMF_2014_54_5_a10
ER  - 
%0 Journal Article
%A M. Goyal
%A R. Bhargava
%T Finite element solution of double-diffusive boundary layer flow of viscoelastic nanofluids over a stretching sheet
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 833
%V 54
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a10/
%G en
%F ZVMMF_2014_54_5_a10
M. Goyal; R. Bhargava. Finite element solution of double-diffusive boundary layer flow of viscoelastic nanofluids over a stretching sheet. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 5. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_5_a10/

[1] S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke, “Anomalously thermal conductivity enhancement in nanotube suspensions”, Appl. Phys. Lett., 79 (2001), 2252–2254 | DOI

[2] H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultrafine particles”, Netsu Bussei, 7 (1993), 227–233 | DOI | MR

[3] S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles”, Developments and applications of non-Newtonian flows, 1995, 99–105

[4] J. Buongiorno, “Convective transport in nanofluids”, ASME J. Heat Transfer, 128 (2006), 240–250 | DOI

[5] W. A. Khan, I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet”, Int. J. Heat Mass Transfer, 53 (2010), 2477–2483 | DOI

[6] A. V. Kuznetsov, D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate”, Int. J. Therm. Sci., 49 (2010), 243–247 | DOI

[7] O. Makinde, A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition”, Int. J. Therm. Sci., 50 (2011), 1326–1332 | DOI

[8] P. D. McCormack, L. J. Crane, Physical Fluid Dynamics, Academic, New York, 1973

[9] P. S. Gupta, A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing”, Can J. Chem. Eng., 55 (1977), 744–746 | DOI

[10] B. K. Dutta, P. Roy, A. S. Gupta, “Temperature field in the flow over a stretching sheet with uniform heat flux”, Int. Commun. Heat Mass Transfer, 12 (1985), 89–94 | DOI

[11] C. K. Chen, M. I. Char, “Heat transfer of a continuous stretching surface with suction or blowing”, J. Math. Anal. Appl., 135 (1988), 568–580 | DOI | MR

[12] K. R. Rajagopal, T. Y. Na, A. S. Gupta, “Flow of a viscoelastic fluid over a stretching sheet”, Rheol. Acta, 23 (1984), 213–221 | DOI

[13] W. D. Chang, “The nonuniqueness of the flow of a viscoelastic fluid over a stretching sheet”, Q. Appl. Math., 47 (1989), 365–366 | MR

[14] I. Pop, D. B. Ingham, Convective Heat Transfer: Mathematical and Computational Modeling of Viscous Fluids and Porous Media, Elsevier, Oxford, 2001

[15] E. R. G. Eckert, R. M. Drake, Analysis of Heat and Mass Transfer, McGraw-Hill, New York, 1972

[16] M. S. Alam, M. M. Rahman, “Dufour and Soret effects on MHD free convective heat and mass transfer flow past a vertical porous flat plate embedded in a porous medium”, J. Naval Architect. Marine Eng., 2:1 (2005), 55–65

[17] A. J. Chamkha, A. Ben-Nakhi, “MHD mixed convection-radiation interaction along a permeable surface immersed in a porous medium in the presence of Soret and Dufour's Effects”, Heat Mass Transfer, 44 (2008), 845–856 | DOI

[18] M. A. Mansour, N. F. El-Anssary, A. M. Aly, “Effects of chemical reaction and thermal stratification on MHD free convective heat and mass transfer over a vertical stretching surface embedded in a porous media considering Soret and Dufour numbers”, Chem. Eng. J., 145 (2008), 340–345 | DOI

[19] R. Tsai, J. S. Huang, “Heat and mass transfer for Soret and Dufour's effects on Hiemenz flow through porous medium onto a stretching surface”, Int. J. Heat Mass Transfer, 52 (2009), 2399–2406 | DOI

[20] O. A. Bég, A. Y. Bakier, V. R. Prasad, “Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects”, Comput. Mater. Sci., 46 (2009), 57–65 | DOI

[21] A. V. Kuznetsov, D. A. Nield, “Double-diffusive natural convective boundary layer flow of a nanofluid past a vertical surface”, Int. J. Thermal Sci., 50 (2011), 712–717 | DOI

[22] W. A. Khan, A. Aziz, “Double-diffusive natural convective boundary layer flow in a porous medium saturated with a nanofluid over a vertical plate: Prescribed surface heat, solutal and nanoparticle fluxes”, Int. J. Thermal Sci., 50 (2011), 2154–2160 | DOI

[23] W. A. Khan, M. J. Uddin, A. I. Md Ismail, “Effect of momentum slip on double-diffusive free convective boundary layer flow of a nanofluid past a convectively heated vertical plate”, J. Nanoeng. Nanosyst., 226:3 (2012), 99–109

[24] F. G. Awad, P. Sibanda, A. A. Khidir, “Thermodiffusion effects on magneto-nanofluid flow over a stretching sheet, boundary value problem”, 2013 | DOI | MR

[25] R. Bhargava, P. Rana, “Finite element solution to mixed convection in MHD flow of micropolar fluid along a moving vertical cylinder with variable conductivity”, Int. J. Appl. Math. Mech., 7 (2011), 29–51

[26] Y. Y. Lin, S. P. Lo, “Finite element modeling for chemical mechanical polishing process under different back pressures”, J. Mat. Proc. Tech., 140 (2003), 646–652 | DOI

[27] W. Dettmer, D. Peric, “A computational framework for fluid-rigid body interaction: Finite element formulation and applications”, Comput. Methods Appl. Mech. Eng., 195 (2006), 1633–1666 | DOI | MR

[28] A. Hansbo, P. Hansbo, “A finite element method for the simulation of strong and weak discontinuities in solid mechanics”, Comput. Methods Appl. Mech. Eng., 139 (2004), 3523–3540 | DOI | MR

[29] C. Y. Wang, “Free convection on a vertical stretching surface”, J. Appl. Math. Mech. (ZAMM), 69 (1989), 418–420 | DOI

[30] R. S. R. Gorla, I. Sidawi, “Free convection on a vertical stretching surface with suction and blowing”, Appl. Sci. Res., 52 (1994), 247–257 | DOI

[31] D. A. Nield, A. V. Kuznetsov, “The Cheng–Minkowycz problem for the double diffusive natural convective boundary layer flow in a porous medium saturated with a nanofluid”, Int. J. Heat Mass Transfer, 54 (2011), 374–378 | DOI