Steady-state problem of complex heat transfer
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4, pp. 711-719
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of radiative-conductive-convective heat transfer in a three-dimensional domain is studied. The existence of a weak solution of the problem is proved, and sufficient conditions for the uniqueness of a solution are found. The temperature distribution in a three-dimensional channel is determined in numerical experiments.
@article{ZVMMF_2014_54_4_a9,
     author = {A. E. Kovtanyuk and A. Yu. Chebotarev},
     title = {Steady-state problem of complex heat transfer},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {711--719},
     year = {2014},
     volume = {54},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a9/}
}
TY  - JOUR
AU  - A. E. Kovtanyuk
AU  - A. Yu. Chebotarev
TI  - Steady-state problem of complex heat transfer
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 711
EP  - 719
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a9/
LA  - ru
ID  - ZVMMF_2014_54_4_a9
ER  - 
%0 Journal Article
%A A. E. Kovtanyuk
%A A. Yu. Chebotarev
%T Steady-state problem of complex heat transfer
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 711-719
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a9/
%G ru
%F ZVMMF_2014_54_4_a9
A. E. Kovtanyuk; A. Yu. Chebotarev. Steady-state problem of complex heat transfer. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4, pp. 711-719. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a9/

[1] Modest M. F., Radiative heat transfer, Academic Press, 2003

[2] Siewert S. E., “An improved iterative method for solving a class of coupled conductive-radiative heat-transfer problems”, J. Quant. Spectrosc. Radiat. Transfer., 54:4 (1995), 599–605 | DOI | MR

[3] Banoczi J. M., Kelley C. T., “A fast multilevel algorithm for the solution of nonlinear systems of conductive-radiative heat transfer equations”, SIAM J. Sci. Comput., 19:1 (1998), 266–279 | DOI | MR | Zbl

[4] Klar A., Siedow N., “Boundary layers and domain decomposition for radiative heat transfer and diffusion equations: applications to glass manufacturing process”, Eur. J. Appl. Math., 9:4 (1998), 351–372 | DOI | MR | Zbl

[5] Thömes G., Pinnau R., Seaïd M. et al., “Numerical methods and optimal control for glass cooling processes”, Transfert Theory Stat. Phys., 31:4–6 (2002), 513–529 | DOI | MR

[6] Pinnau R., Seaid M., “Simplified PN models and natural convection-radiation”, Math. in Industry, 12 (2008), 397–401 | DOI | MR | Zbl

[7] Kovtanyuk A. E., Botkin N. D., Hoffmann K.-H., “Numerical simulations of a coupled conductive-radiative heat transfer model using a modified Monte Carlo method”, Int. J. Heat and Mass Transfer, 55 (2012), 649–654 | DOI | Zbl

[8] Kovtanyuk A. E., “Algoritmy parallelnykh vychislenii dlya zadach radiatsionno-konduktivnogo teploobmena”, Kompyuternye issledovaniya i modelirovanie, 4:3 (2012), 543–552

[9] Kovtanyuk A. E., Chebotarev A. Yu., “An iterative method for solving a complex heat transfer problem”, Appl. Math. Comput., 219 (2013), 9356–9362 | DOI | MR | Zbl

[10] Amosov A. A., “Globalnaya razreshimost odnoi nelineinoi nestatsionarnoi zadachi s nelokalnym kraevym usloviem tipa teploobmena izlucheniem”, Differents. ur-niya, 41:1 (2005), 93–104 | MR | Zbl

[11] Pinnau R., “Analysis of optimal boundary control for radiative heat transfer modeled by the $\mathrm{SP}_1$-System”, Comm. Math. Sci., 5:4 (2007), 951–969 | DOI | MR | Zbl

[12] Druet P.-E., “Existence of weak solutions to the time*dependent MHD-equations coupled to heat transfer with nonlocal radiation boundary conditions”, Nonlinear Anal. Real World Appl., 10:5 (2009), 2914–2936 | DOI | MR | Zbl

[13] Ducomet B., Necasova S., “Global weak solutions to the 1D compressible Navier–Stokes equations with radiation”, Commun. Math. Anal., 8:3 (2010), 23–65 | MR | Zbl

[14] Tse O., Pinnau R., Siedow N., “Identification of temperature dependent parameters in laser-interstitial thermo therapy”, Math. Models Methods Appl. Sci., 22:9 (2012), 1–29 | DOI | MR

[15] Kelley C. T., “Existence and uniqueness of solutions of nonlinear systems of conductive*radiative heat transfer equations”, Transport Theory Statist. Phys., 25:2 (1996), 249–260 | DOI | MR | Zbl

[16] Amosov A. A., “O razreshimosti odnoi zadachi teploobmena izlucheniem”, Dokl. AN SSSR, 245:6 (1979), 1341–1344 | MR

[17] Amosov A. A., “O predelnoi svyazi mezhdu dvumya zadachami teploobmena izlucheniem”, Dokl. AN SSSR, 246:5 (1979), 1080–1083 | MR

[18] Laitinen M. T., Tiihonen T., “Heat transfer conducting, radiating and semitransparent materials”, Math. Meth. Appl. Sci., 21 (1998), 375–392 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[19] Laitinen M., “Asymptotic analysis of conductive-radiative heat transfer”, Asymptotic Analysis, 29:3–4 (2002), 323–342 | MR | Zbl

[20] Amosov A. A., “Stationary nonlinear nonlocal problem of radiative-conductive heat transfer in a system of opaque bodies with properties depending on the radiation frequency”, J. Math. Sci., 164:3 (2010), 309–344 | DOI | MR

[21] Marshak R., “Note on the spherical harmonic method as applied to the Milne problem for sphere”, Phys. Rev., 71:7 (1947), 443–446 | DOI | MR | Zbl