On the choice of a method for integrating the equations of motion of a set of fluid particles
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4, pp. 697-710
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Results of numerical experiments are described in which the evolution of a set of fluid particles is computed using various time integration methods. Known exact solutions of the inviscid equations are used to analyze the errors of the methods occurring on various time intervals at the same computational costs. An adaptive algorithm for choosing an integration method depending on the domain of the phase space is proposed. The numerical results are presented as tables and plots.
@article{ZVMMF_2014_54_4_a8,
     author = {V. N. Govorukhin},
     title = {On the choice of a method for integrating the equations of motion of a set of fluid particles},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {697--710},
     year = {2014},
     volume = {54},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a8/}
}
TY  - JOUR
AU  - V. N. Govorukhin
TI  - On the choice of a method for integrating the equations of motion of a set of fluid particles
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 697
EP  - 710
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a8/
LA  - ru
ID  - ZVMMF_2014_54_4_a8
ER  - 
%0 Journal Article
%A V. N. Govorukhin
%T On the choice of a method for integrating the equations of motion of a set of fluid particles
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 697-710
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a8/
%G ru
%F ZVMMF_2014_54_4_a8
V. N. Govorukhin. On the choice of a method for integrating the equations of motion of a set of fluid particles. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4, pp. 697-710. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a8/

[1] Sanz-Serna J., Calvo M., Numerical Hamiltonian problems, Chapman Hall, London, 1994 | MR

[2] Hairer E., Lubich C., Wanner G., Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, Springer, Berlin, 2006 | MR | Zbl

[3] McLachlan R. I., “Area preservation in computational fluid dynamics”, Phys. Lett. A, 264:1 (1999), 36–44 | DOI | MR | Zbl

[4] Vosbeek P., Mattheij R., “Contour dynamics with symplectic time integration”, J. Comput. Phys., 133:2 (1997), 222–234 | DOI | MR | Zbl

[5] Govorukhin V. N., Il'in K. I., “Numerical study of an inviscid incompressible flow through a channel of finite length”, Int. J. Numer. Methods Fluids, 60:12 (2009), 1315–1333 | DOI | MR | Zbl

[6] Govorukhin V. N., “Variant metoda vikhrei v yacheikakh dlya rascheta ploskikh techenii idealnoi neszhimaemoi zhidkosti”, Zh. vychisl. matem. matem. fiz., 51:6 (2011), 1113–1147 | MR

[7] Govorukhin V. N., Tsybulin V. G., Karasözen B., “Dynamics of numerical methods for cosymmetric ordinary differential equations”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11:9 (2001), 2339–2357 | DOI | MR | Zbl

[8] Kulikov G. Yu., Kuznetsov E. B., Khrustaleva E. Yu., “O kontrole globalnoi oshibki v neyavnykh gnezdovykh metodakh Runge–Kutty gaussovskogo tipa”, Sib. zhurn. vychisl. matem., 14:3 (2011), 245–259 | MR | Zbl

[9] Loffeld J., Tokman M., “Comparative performance of exponential, implicit, and explicit integrators for stiff systems of ODEs”, J. Comput. Appl. Math., 241:1 (2013), 45–67 | DOI | MR | Zbl

[10] Higham D., Humphries A., Wain R., “Phase space error control for dynamical systems”, SIAM J. Sci. Comput., 21:6 (2000), 2275–2294 | DOI | MR | Zbl

[11] Lamb G., Gidrodinamika, Gos. izd. tekhniko-teoreticheskoi literatury, M.–L., 1947

[12] Arushanyan O. B., Zaletkin S. F., Chislennoe reshenie obyknovennykh differentsialnykh uravnenii na Fortrane, Izd-vo MGU, M., 1990 | MR | Zbl

[13] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii, Mir, M., 1990 | MR

[14] Matsumoto T., Bec J., Frisch U., “The analytic structure of 2D Euler flow at short times”, Fluid Dyn. Res., 36:4–6 (2005), 221–237 | DOI | MR | Zbl

[15] Chacøn Vera E., Chacøn Rebollo T., “On cubic spline approximations for the vortex patch problem”, Appl. Numer. Math., 36:4 (2001), 359–387 | DOI | MR | Zbl

[16] Strain J., “2D vortex methods and singular quadrature rules”, J. Comput. Phys., 124:1 (1996), 131–145 | DOI | MR | Zbl

[17] Fuchs V., Gunn J., “On the integration of equations of motion for particle-in-cell codes”, J. Comput. Phys., 214:1 (2006), 299–315 | DOI | MR | Zbl

[18] Semenov D. S., “Osobennosti nevyazkogo transzvukovogo techeniya okolo profilya s vognutoi srednei chastyu”, Matem. modelirovanie, 19:2 (2007), 33–38 | Zbl

[19] Tan X., “Almost symplectic Runge–Kutta schemes for Hamiltonian systems”, J. Comput. Phys., 203:1 (2005), 250–273 | DOI | MR | Zbl

[20] Vosbeek P. W. C., Clerex H. J. H., Van Heijst G. J. F., Mattheij R. M. M., “Contour dynamics with non-uniform background vorticity”, Int. J. Comput. Fluid Dyn., 15:3 (2001), 227–249 | DOI | MR | Zbl

[21] Verlet L., “Computer “experiments” on classical fluids. I: Thermodynamical properties of Lennard–Jones molecules”, Physical Review, 159:1 (1967), 98–103 | DOI

[22] Sanderse B., “Energy-conserving Runge–Kutta methods for the incompressible Navier–Stokes equations”, J. Comput. Phys., 233:1 (2013), 100–131 | DOI | MR | Zbl

[23] Aubry A., Chartier P., “Pseudo-symplectic Runge–Kutta methods”, BIT, 38:3 (1998), 439–461 | DOI | MR | Zbl

[24] Govorukhin V. N., Morgulis A. B., Yudovich V. I., “Raschet dvumernykh rezhimov protekaniya idealnoi neszhimaemoi zhidkosti skvoz pryamougolnyi kanal”, Dokl. AN, 412:4 (2007), 480–484

[25] Nielsen A., Rasmussen J., “Formation and temporal evolution of the Lamb-dipole”, Phys. Fluids, 9:4 (1997), 982–991 | DOI | MR | Zbl

[26] Hesthaven J., Lynov J., Nielsen A. et al., “Dynamics of a nonlinear dipole vortex”, Phys. Fluids, 7:9 (1995), 2220–2229 | DOI | MR | Zbl

[27] Dillon Dahleh M., “A computational study of the error in the vortex method associated with discontinuous vorticity”, Numer. Meth. Partial Differ. Equations, 12:5 (1996), 547–564 | 3.0.CO;2-K class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[28] Baker G. R., Beale J., “Vortex blob methods applied to interfacial motion”, J. Comput. Phys., 196:1 (2004), 233–258 | DOI | MR | Zbl

[29] Luther H. A., “An explicit sixth-order Runge–Kutta formula”, Math. Comp., 22 (1968), 434–436 | DOI | Zbl

[30] Govorukhin V. N., “A Meshfree method for the analysis of planar flows of inviscid fluids”, Meshfree Methods for Partial Differential Equations VI, Lecture Notes in Computational Science and Engineering, 89, eds. M. Griebel, M. A. Schweitzer, Springer, Berlin–Heidelberg, 2013, 171–180 | DOI | Zbl