Numerical study of Couette flow based on a nonlinear nonequilibrium kinetic model of the Boltzmann equation for monatomic gases
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4, pp. 686-696
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The two-dimensional Couette flow with heat transfer was studied numerically using a non-linear nonequilibrium kinetic model of the Boltzmann equation. The effects of a maximum normal stress and a minimum streamwise energy flux were found depending on the Knudsen number.
@article{ZVMMF_2014_54_4_a7,
     author = {I. N. Larina and V. A. Rykov},
     title = {Numerical study of {Couette} flow based on a nonlinear nonequilibrium kinetic model of the {Boltzmann} equation for monatomic gases},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {686--696},
     year = {2014},
     volume = {54},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a7/}
}
TY  - JOUR
AU  - I. N. Larina
AU  - V. A. Rykov
TI  - Numerical study of Couette flow based on a nonlinear nonequilibrium kinetic model of the Boltzmann equation for monatomic gases
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 686
EP  - 696
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a7/
LA  - ru
ID  - ZVMMF_2014_54_4_a7
ER  - 
%0 Journal Article
%A I. N. Larina
%A V. A. Rykov
%T Numerical study of Couette flow based on a nonlinear nonequilibrium kinetic model of the Boltzmann equation for monatomic gases
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 686-696
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a7/
%G ru
%F ZVMMF_2014_54_4_a7
I. N. Larina; V. A. Rykov. Numerical study of Couette flow based on a nonlinear nonequilibrium kinetic model of the Boltzmann equation for monatomic gases. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4, pp. 686-696. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a7/

[1] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967

[2] Shakhov E. M., “Zadacha Kuetta dlya obobschennogo uravneniya Kruka. Effekt maksimuma napryazheniya”, Izv. AN SSSR. Mekh. zhidk. i gaza, 1969, no. 5, 17–24

[3] Bishaev A. M., Rykov V. A., “O prodolnom potoke tepla v techenii Kuetta”, Izv. AN SSSR. Mekh. zhidk. i gaza, 1980, no. 3, 162–166 | Zbl

[4] Aristov V. V., Frolova A. A., Zabelok S. A., Kolobov R. R., “Kinetic effects for Couette flows with oscillating walls”, Proc. 26th Int. Symp. on Rarefied Gas Dynamics (Kioto, Japan, 2008), 1117–1122

[5] Abramov A. A., Butkovskii A. V., “Effekty nemonotonnosti i izmeneniya znaka potoka energii v perekhodnom rezhime v zadache Kuetta s teploperedachei”, Izv. RAN. Mekh. zhidk. i gaza, 2010, no. 1, 168–175 | MR

[6] Abramov A. A., Butkovskii A. V., “Vliyanie neodnorodnogo raspredeleniya koeffitsienta akkomodatsii na techenie Kuetta”, Izv. RAN. Mekh. zhidk. i gaza, 2012, no. 3, 141–146 | MR | Zbl

[7] Larina I. N., Rykov V. A., “Nelineino-neravnovesnaya kineticheskaya model uravneniya Boltsmana dlya gaza so stepennym potentsialom vzaimodeistviya”, Izv. RAN. Mekh. zhidk. i gaza, 2013, no. 6, 147–160 | Zbl

[8] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechno-raznostnykh skhem dlya razryvnykh techenii gazovoi dinamiki”, Uchen. zap. TsAGI, 3:6 (1972), 68–77

[9] Larina I. N., Rykov V. A., “Raschet techenii razrezhennogo dvukhatomnogo gaza cherez ploskii mikrokanal”, Zh. vychisl. matem. i matem. fiz., 52:4 (2012), 720–732 | Zbl

[10] Kolgan V. P., “Application of the principle of minimizing the derivative to construction of finite-difference schemes for computing discontinuous solution o gas dynamics”, J. Comput. Phys., 230:7 (2011), 2384–2390 | DOI | MR | Zbl

[11] Rodionov A. V., “Complement to the Kolgan project”, J. Comput. Phys., 231 (2012), 4465–4468 | DOI | MR | Zbl