@article{ZVMMF_2014_54_4_a6,
author = {S. I. Bezrodnykh and V. I. Vlasov},
title = {Application of the multipole method to direct and inverse problems for the {Grad{\textendash}Shafranov} equation with a nonlocal condition},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {619--685},
year = {2014},
volume = {54},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a6/}
}
TY - JOUR AU - S. I. Bezrodnykh AU - V. I. Vlasov TI - Application of the multipole method to direct and inverse problems for the Grad–Shafranov equation with a nonlocal condition JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 619 EP - 685 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a6/ LA - ru ID - ZVMMF_2014_54_4_a6 ER -
%0 Journal Article %A S. I. Bezrodnykh %A V. I. Vlasov %T Application of the multipole method to direct and inverse problems for the Grad–Shafranov equation with a nonlocal condition %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 619-685 %V 54 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a6/ %G ru %F ZVMMF_2014_54_4_a6
S. I. Bezrodnykh; V. I. Vlasov. Application of the multipole method to direct and inverse problems for the Grad–Shafranov equation with a nonlocal condition. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4, pp. 619-685. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a6/
[1] Tamm I. E., Sakharov A. D., Fizika plazmy i problema upravlyaemykh termoyadernykh reaktsii, v. 1, AN SSSR, M., 1958 | Zbl
[2] Artsimovich L. A., Upravlyaemye termoyadernye reaktsii, Fizmatgiz, M., 1963
[3] Mirnov S. V., Fizicheskie protsessy v plazme tokamaka, Energoatomizdat, M., 1985
[4] White R. B., Theory of Tokamak plasmas, North-Holland, Amsterdam–Oxford–New-York–Tokio, 1989
[5] Blum J., Numerical simulation and optimal control in plasma physics, J. Wiley and Sons, New York, 1989 | MR | Zbl
[6] ITER Documentation series, v. 1, IAEA, Vienna, 1990
[7] Dnestrovskii Yu. N., Kostomarov D. P., Matematicheskoe modelirovanie plazmy, Nauka, M., 1993
[8] Aymar R., Barabaschi P., Shimomura Y., “The ITER design”, Plasma Phys. Control. Fusion, 44 (2002), 519–565 | DOI
[9] Shafranov V. D., “On equilibrium magnetohydrodynamic configurations”, Terzo Congresso Internazionale Sui Fenomeni D'ionizzazione Nei Gas (Venezia, 11–15 giugno), Milano, 1957, 990–997
[10] Shafranov V. D., “O ravnovesnykh magnitogidrodinamicheskikh konfiguratsiyakh”, Zh. eksperiment. i teor. fiz., 33:3(9) (1957), 710–722 | Zbl
[11] Grad H., Rubin H., “Hydromagnetic equilibria and force-free fields”, Proc. of the 2nd United Nations International Conference on the Peaceful Uses of Atomic Energy (1958, Geneva), Theoretical and Experimental Aspects of Controlled Nuclear Fusion, 31, Columbia University Press, New York, 1959, 190
[12] Shafranov V. D., “Ravnovesie plazmy v magnitnom pole”, Voprosy teorii plazmy, 2, Gosatomizdat, M., 1963, 92–131
[13] Landau L. D., Lifshits E. M., Elektrodinamika sploshnykh sred, Gostekhizdat, M., 1957; 2-е изд., Наука, М., 1982
[14] Syrovatskii S. I., “Magnitnaya gidrodinamika”, Uspekhi fiz. nauk, 62:3 (1957), 247–290 | DOI
[15] Kulikovskii A. G., Lyubimov G. A., Magnitnaya gidrodinamika, Fizmatgiz, M., 1962; 2-е изд., Логос, М., 2005
[16] Polovin R. V., Demutskii V. P., Osnovy magnitnoi gidrodinamiki, Energoatomizdat, M., 1987
[17] Morozov A. I., Vvedenie v plazmodinamiku, Fizmatlit, M., 2006
[18] Brushlinskii K. V., Matematicheskie i vychislitelnye zadachi magnitnoi gazodinamiki, BINOM. Laboratoriya znanii, M., 2009
[19] Vogelius M., “An inverse problem for the equation $\Delta u=-cu-d$”, Ann. Inst. Fourier, 44:4 (1994), 1181–1204 | DOI | MR
[20] Demidov A. S., “Ob obratnoi zadache dlya uravneniya Greda–Shafranova s affinnoi pravoi chastyu”, Uspekhi matem. nauk, 55:6 (2000), 131–132 | DOI | MR | Zbl
[21] Dalmasso R., “An inverse problem for the elliptic equation with an affine form”, Math. Ann., 316 (2000), 771–792 | DOI | MR | Zbl
[22] Demidov A., “On the inverse problem for the Grad–Shafranov equation with affine right-hand side”, 2nd Conference on Inverse Problems, Control and Shape Optimization, Abstracts (Carthage, Tunisie, April 10–12, 2002), 93–94 | MR
[23] Demidov A. S., Moussaoui M., “An inverse problem originating from magnetohydrodynamics”, Inverse Problems, 20 (2004), 137–154 | DOI | MR | Zbl
[24] Demidov A. S., Kochurov A. S., Popov A. Yu., “To the problem of the recovery of non+linearities in equations of mathematical physics”, J. Math. Sci., 163:1 (2009), 46–77 | DOI | MR | Zbl
[25] Demidov A. S., “Funktsionalno-geometricheskii metod resheniya zadach so svobodnoi granitsei dlya garmonicheskikh funktsii”, Uspekhi matem. nauk, 65:1 (2010), 3–96 | DOI | MR | Zbl
[26] Demidov A. S., Zakharov L. E., “Pryamaya i obratnaya zadachi v teorii ravnovesiya plazmy”, Uspekhi matem. nauk, 29:6 (1974), 203 | MR
[27] Demidov A. S., Petrova V. V., Silantiev V. M., “On inverse and direct free boundary problems in the theory of plasma equilibrium in a Tokamak”, C.R. Acad. Sci. Paris. Série I, 323 (1996), 353–358 | MR | Zbl
[28] Blum J., Buvat H., “An inverse problem in plasma physics: the identification of the current density profile in a tokamak”, IMA volumes in mathematics and its applications, 92, Springer-Verlag, 1997, 17–36 | DOI | MR | Zbl
[29] Pustovitov V. D., “Magnetic diagnostics: General principles and the problem of reconstruction of plasma current and pressure profiles in toroidal systems”, Nucl. Fusion, 41 (2001), 721–730 | DOI
[30] Beretta E., Vogelius M., “An inverse problem originating from magnetohydrodynamics”, Arch. Rat. Mech. and Anal., 115 (1991), 137–152 | DOI | MR | Zbl
[31] Beretta E., Vogelius M., “An inverse problem originating from magnetohydrodynamics. II: The case of the Grad–Shafranov equation”, Indiana Univ. Math. J., 41 (1992), 1081–1118 | DOI | MR | Zbl
[32] Beretta E., Vogelius M., “An inverse problem originating from magnetohydrodynamics. III: Domains with corners of arbitrary angles”, Asymptotic Analysis, 11 (1995), 289–315 | MR | Zbl
[33] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR
[34] Bezrodnykh S. I., Vlasov V. I., Demidov A. S., “Primenenie metoda multipolei k modelnoi zadache o ravnovesii plazmy”, Molodezh v nauke, Tezisy dokladov (Sarov, 30 oktyabrya–1 noyabrya 2007 g.), 8 | Zbl
[35] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR
[36] Adams R., Sobolev spaces, Academic Press, New York–San Francisco–London, 1975 | MR | Zbl
[37] Slobodetskii L. N., “Obobschennye prostranstva S. L. Soboleva i ikh prilozheniya k kraevym zadacham dlya differentsialnykh uravnenii v chastnykh proizvodnykh”, Uchen. zap. Leningr. gos. ped. in-ta, 197 (1958), 54–112
[38] Burenkov V. I., Sobolev spaces on domains, Teubner, Stuttgart–Leipzig, 1998 | MR | Zbl
[39] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR
[40] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR
[41] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl
[42] Grisvard P., Elliptic problems in nonsmooth domains, Monograph and studies in mathematics, Pitman, Boston–London–Melbourne, 1985 | MR | Zbl
[43] Nirenberg L., “Remarks on strongly elliptic partial differential equations”, Comm. Appl. Math., 8 (1955), 648–674 | DOI | MR
[44] Browder F. E., “On regularity properties of solutions of elliptic differential equations”, Comm. Pure Appl. Math., 9 (1956), 351–361 | DOI | MR | Zbl
[45] Lions J. L., Lectures on elliptic differential equations, Tata Institute of Fundamental Research, Bombay, 1957
[46] Schechter M., “General boundary value problems for elliptic partial differential equations”, Comm. Pure Appl. Math., 12 (1959), 457–486 | DOI | MR | Zbl
[47] Agmon S., “The approach to the Dirichlet problem”, Ann. Scuola Norm. Sup. Pisa, 13:3 (1959), 49–92 | MR
[48] Peetre J., Théorèms de régularite pour quelques classes d'opérateurs différentiells, Thesis, Lund, 1959
[49] Bers L., Dzhon F., Shekhter M., Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR | Zbl
[50] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[51] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973 | MR
[52] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, Izd-vo inostrannoi literatury, M., 1957
[53] Hopf E., “Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen zweiter Ordung vom elliptischen Typus”, Sitzungsberichte Preuss. Akad. Wissensch. Berlin, Math.-Phys., 19 (1927), 147–152
[54] Giraud G., “Généralisation des problémes sur les opérations du type elliptique”, Bull. Sc. Math., 56 (1932), 316–352
[55] Giraud G., “Problémes de valeurs á la frontiére relatifs á certaines donnos discontinues”, Bull. Soc. math. de France, 61 (1933), 1–54 | MR
[56] Hopf E., “A remark on linear elliptic differential equations of second order”, Proc. Amer. Math. Soc., 3 (1952), 791–793 | DOI | MR | Zbl
[57] Oleinik O. A., “O svoistvakh reshenii nekotorykh zadach dlya uravnenii ellipticheskogo tipa”, Matem. sb., 30:3 (1952), 695 | MR
[58] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Uravneniya v chastnykh proizvodnykh matematicheskoi fiziki, Vysshaya shkola, M., 1970 | Zbl
[59] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR
[60] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR
[61] Danford N., Shvarts Dzh. T., Lineinye operatory, v. II, Spektralnaya teoriya, Mir, M., 1966
[62] Hërmander L., The analysis of linear partial differential operators, v. I–IV, Springer-Verlag, Berlin–New York, 1983–1985
[63] Agranovich M. S., “Ellipticheskie operatory na zamknutykh mnogoobraziyakh”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 63, VINITI, M., 1990, 5–129 | MR
[64] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl
[65] Vlasov V. I., Metod multipolei, Tekhnicheskii otchet, VTs AN SSSR, 1976
[66] Vlasov V. I., “O reshenii zadachi Dirikhle posredstvom razlozheniya v ryad Fure”, Dokl. AN SSSR, 249:1 (1979), 19–22 | MR | Zbl
[67] Vlasov V. I., Kraevye zadachi v oblastyakh s krivolineinoi granitsei, VTs AN SSSR, M., 1987 | MR
[68] Vlasov V. I., “Ob odnom metode resheniya nekotorykh ploskikh smeshannykh zadach dlya uravneniya Laplasa”, Dokl. AN SSSR, 237:5 (1977), 1012–1015 | MR | Zbl
[69] Vlasov V. I., “Multipole method for solving some boundary value problems in complex-shaped domains”, Zeitshr. Angew. Math. Mech., 76, Suppl. 1 (1996), 279–282 | MR | Zbl
[70] Smirnov V. I., “Sur la théorie des polynomes orthogonaux á la variable complex”, Zh. Leningrad. fiz.-matem. o-va, 2:1 (1928), 155–179
[71] Keldysh M. V., Lavrentieff M. A., “Sur la representation conform des domaines limitès par les courbes rectifiables”, Ann. Ecole Norm. sup., 54:3 (1937), 1–38 | MR | Zbl
[72] Cimmino G., “Nuovo tipo di condizione al contorno e nuovo metodo di trattazione per il problema generalizzato di Dirichlet”, Rend. Circ. Mat. Palermo, 61 (1938), 177–221 | DOI
[73] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M.–L., 1950
[74] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[75] Mazya V. G., “O vyrozhdayuscheisya zadache s kosoi proizvodnoi”, Matem. sb., 87 (1972), 417–454
[76] Guschin A. K., Mikhailov V. P., “O granichnykh znacheniyakh v $L_p$, $p>1$, resheniya ellipticheskogo uravneniya”, Matem. sbornik, 108:1 (1979), 3–21 | MR
[77] Vlasov V. I., Kraevye zadachi v oblastyakh s krivolineinoi granitsei, Diss. ... dokt. fiz.-mat. nauk, VTs AN SSSR, M., 1990 | MR
[78] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR
[79] Mikhlin S. G., Chislennaya realizatsiya variatsionnykh metodov, Nauka, M., 1966 | MR
[80] Fox L., Henrici P., Moler C., “Approximations and bounds for eigenvalues of elliptic operators”, SIAM J. Numer. Anal., 4:1 (1967), 89–102 | DOI | MR | Zbl
[81] Vlasov V. I., “Metod resheniya kraevykh zadach v oblastyakh s konusami”, Dokl. AN, 397:5 (2004), 571–574 | MR
[82] Skorokhodov S. L., Vlasov V. I., “The Multipole method for the Laplace equation in domains with polyhedral corners”, Comput. Assisted Mech. and Engineering Sci., 11 (2004), 223–238 | Zbl