@article{ZVMMF_2014_54_4_a4,
author = {R. Weiner and G. Yu. Kulikov},
title = {Efficient error control in numerical integration of ordinary differential equations and optimal interpolating variable-stepsize peer methods},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {591--607},
year = {2014},
volume = {54},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a4/}
}
TY - JOUR AU - R. Weiner AU - G. Yu. Kulikov TI - Efficient error control in numerical integration of ordinary differential equations and optimal interpolating variable-stepsize peer methods JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 591 EP - 607 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a4/ LA - ru ID - ZVMMF_2014_54_4_a4 ER -
%0 Journal Article %A R. Weiner %A G. Yu. Kulikov %T Efficient error control in numerical integration of ordinary differential equations and optimal interpolating variable-stepsize peer methods %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 591-607 %V 54 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a4/ %G ru %F ZVMMF_2014_54_4_a4
R. Weiner; G. Yu. Kulikov. Efficient error control in numerical integration of ordinary differential equations and optimal interpolating variable-stepsize peer methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4, pp. 591-607. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a4/
[1] Berezin I. S., Zhidkov N. P., Metody vychislenii, v. 1, Gos. izd-vo fiz.-mat. lit-ry, M., 1962 | MR
[2] Kalitkin H. H., Chislennye metody, Nauka, M., 1978 | MR
[3] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl
[4] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR
[5] Arushanyan O. B., Zaletkin S. F., Chislennoe reshenie obyknovennykh differentsialnykh uravnenii na Fortrane, Izd-vo MGU, M., 1990 | MR | Zbl
[6] Khairer E., Nersett S., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Nezhestkie zadachi, Mir, M., 1990 | MR
[7] Khairer E., Vanner G., Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999
[8] Shampine L. F., Watts H. A., “Global error estimation for ordinary differential equations”, ACM Trans. Math. Software, 2 (1976), 172–186 | DOI | MR | Zbl
[9] Stetter H. J., “Global error estimation in ODE-solvers”, Numerical integration of differential equations and large linear systems, Proc. (Bielefeld, 1980), Lecture Notes in Mathematics, 968, ed. Hinze J., 1982, 269–279 | DOI | Zbl
[10] Shampine L. F., “Global error estimation for stiff ODEs”, Lecture Notes in Mathematics, 1066, 1984, 159–168 | DOI | MR | Zbl
[11] Skeel R. D., “Thirteen ways to estimate global error”, Numer. Math., 48 (1986), 1–20 | DOI | MR | Zbl
[12] Skeel R. D., “Global error estimation and the backward differentiation formulas”, Appl. Math. Comput., 31 (1989), 197–208 | DOI | MR | Zbl
[13] Higham D. J., “Global error versus tolerance for explicit Runge–Kutta methods”, IMA J. Numer. Anal., 11 (1991), 457–480 | DOI | MR | Zbl
[14] Novikov E. A., “Otsenka globalnoi oshibki $A$-ustoichivykh metodov resheniya zhestkikh sistem”, Dokl. AN, 343:4 (1995), 452–455 | MR | Zbl
[15] Aïd R., Levacher L., “Numerical investigations on global error estimation for ordinary differential equations”, J. Comput. Appl. Math., 82 (1997), 21–39 | DOI | MR | Zbl
[16] Calvo M., Higham D. J., Montijano J. I., Rández L., “Stepsize selection for tolerance proportionality in explicit Runge–Kutta codes”, Adv. Comput. Math., 7 (1997), 361–382 | DOI | MR | Zbl
[17] Kulikov G. Yu., Shindin S. K., “Ob effektivnom vychislenii asimptoticheski vernykh otsenok lokalnoi i globalnoi oshibok dlya mnogoshagovykh metodov s postoyannymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 840–861 | MR
[18] Kulikov G. Yu., Shindin S. K., “O mnogoshagovykh metodakh interpolyatsionnogo tipa s avtomaticheskim kontrolem globalnoi oshibki”, Zh. vychisl. matem. i matem. fiz., 44:8 (2004), 1388–1409 | MR | Zbl
[19] Kulikov G. Yu., Merkulov A. I., “Ob odnoshagovykh kollokatsionnykh metodakh so starshimi proizvodnymi dlya resheniya obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:10 (2004), 1782–1807 | MR | Zbl
[20] Kulikov G. Yu., “One-step methods and implicit extrapolation technique for index 1 differential-algebraic systems”, Russian J. Numer. Anal. Math. Model., 19:6 (2004), 527–553 | DOI | MR | Zbl
[21] Shampine L. F., “Error estimation and control for ODEs”, J. Sci. Comput., 25 (2005), 3–16 | DOI | MR | Zbl
[22] Kulikov G. Yu., Shindin S. K., “Global error estimation and extrapolated multistep methods for index 1 differential-algebraic systems”, BIT, 45 (2005), 517–542 | DOI | MR | Zbl
[23] Kulikov G. Yu., Shindin S. K., “One-leg variable-coefficient formulas for ordinary differential equations and local-global step size control”, Numer. Algorithms, 43 (2006), 99–121 | DOI | MR | Zbl
[24] Lang J., Verwer J. G., “On global error estimation and control for initial value problems”, SIAM J. Sci. Comput., 29 (2007), 1460–1475 | DOI | MR | Zbl
[25] Kulikov G. Yu., Khrustaleva E. Yu., “Ob avtomaticheskom upravlenii razmerom shaga i poryadkom v neyavnykh odnoshagovykh ekstrapolyatsionnykh metodakh”, Zh. vychisl. matem. i matem. fiz., 48:9 (2008), 1580–1606 | MR
[26] Kulikov G. Yu., Shindin S. K., “Local and global error estimation in Nordsieck methods”, Russian J. Numer. Anal. Model., 23:6 (2008), 567–595 | MR | Zbl
[27] Kulikov G. Yu., Weiner R., “Global error control in implicit parallel peer methods”, Russian J. Numer. Anal. Math. Model., 25:2 (2010), 131–146 | DOI | MR | Zbl
[28] Kulikov G. Yu., Weiner R., “Global error estimation and control in linearly-implicit parallel two-step peer $\mathrm{W}$-methods”, J. Comput. Appl. Math., 236 (2011), 1226–1239 | DOI | MR | Zbl
[29] Kulikov G. Yu., “Global error control in adaptive Nordsieck methods”, SIAM J. Sci. Comput., 34 (2012), A839–A860 | DOI | MR | Zbl
[30] Kulikov G. Yu., “Cheap global error estimation in some Runge–Kutta pairs”, IMA J. Numer. Anal., 33 (2013), 136–163 | DOI | MR | Zbl
[31] Kulikov G. Yu., “Adaptive Nordsieck formulas with advanced global error control mechanisms”, Russian J. Numer. Anal. Math. Model., 28:4 (2013), 321–352 | DOI | Zbl
[32] Weiner R., Kulikov G. Yu., “Local and global error estimation and control within explicit two-step peer triples”, J. Comput. Appl. Math., 262 (2014), 261–270 | DOI | MR
[33] Kulikov G. Yu., “On quasi-consistent integration by Nordsieck methods”, J. Comput. Appl. Math., 225 (2009), 268–287 | DOI | MR | Zbl
[34] Skeel R. D., “Analysis of fixed-stepsize methods”, SIAM J. Numer. Anal., 13 (1976), 664–685 | DOI | MR | Zbl
[35] Skeel R. D., Jackson L. W., “Consistency of Nordsieck methods”, SIAM J. Numer. Anal., 14 (1977), 910–924 | DOI | MR | Zbl
[36] Burrage K., Butcher J. S., “Non-linear stability of a general class of differential equation methods”, BIT, 20 (1980), 185–203 | DOI | MR | Zbl
[37] Kulikov G. Yu., Weiner R., “Doubly quasi-consistent parallel explicit peer methods with built-in global error estimation”, J. Comput. Appl. Math., 233 (2010), 2351–2364 | DOI | MR | Zbl
[38] Schmitt B. A., Weiner R., “Parallel two-step $\mathrm{W}$-methods with peer variables”, SIAM J. Numer. Anal., 42 (2004), 265–286 | DOI | MR
[39] Weiner R., Schmitt B. A., Podhaisky H., “Parallel “Peer” two-step $\mathrm{W}$-methods and their application to MOL-systems”, Appl. Math., 48 (2004), 425–439 | MR | Zbl
[40] Podhaisky H., Weiner R., Schmitt B. A., “Rosenbrock-type “peer” methods”, Appl. Numer. Math., 53 (2005), 409–420 | DOI | MR | Zbl
[41] Schmitt B. A., Weiner R., Erdmann K., “Implicit parallel peer methods for initial value problems”, Appl. Numer. Math., 53 (2005), 457–470 | DOI | MR | Zbl
[42] Weiner R., Schmitt B. A., Podhaishy H., “Multi-implicit peer two-step $\mathrm{W}$-methods for parallel time integration”, BIT, 45 (2005), 197–217 | DOI | MR | Zbl
[43] Podhaisky H., Weiner R., Schmitt B. A., “Linearly-implicit two-step methods and their implementation in Nordsieck form”, Appl. Numer. Math., 56 (2006), 374–387 | DOI | MR | Zbl
[44] Weiner R., Biermann K., Schmitt B. A., Podhaisky H., “Explicit two-step peer methods”, Comput. Math. Appl., 55 (2008), 609–619 | DOI | MR | Zbl
[45] Weiner R., Schmitt B. A., Podhaisky H., Jebens S., “Superconvergent explicit two-step peer methods”, J. Comput. Appl. Math., 223 (2009), 753–764 | DOI | MR | Zbl
[46] Kulikov G. Yu., Weiner R., “Variable-stepsize interpolating explicit parallel peer methods with inherent global error control”, SIAM J. Sci. Comput., 32:4 (2010), 1695–1723 | DOI | MR | Zbl
[47] Kulikov G. Yu., Shindin S. K., “Nordsieck methods on nonuniform grids: Stability and order reduction phenomenon”, Math. Comput. Simul., 72 (2006), 47–56 | DOI | MR | Zbl
[48] Kulikov G. Yu., “O reshenii problemy poteri tochnosti v kvazisoglasovannykh metodakh Nordsika s peremennym shagom integrirovaniya”, Zh. vychisl. matem. i matem. fiz., 52:11 (2012), 2004–2022 | MR | Zbl
[49] Crouzeix M., Lisbona F. J., “The convergence of variable-stepsize, variable formula, multistep methods”, SIAM J. Numer. Analys., 21 (1984), 512–534 | DOI | MR | Zbl
[50] Prothero A., Robinson A., “On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations”, Math. Comp., 24 (1974), 145–162 | DOI | MR