Difference schemes for solving the Cauchy problem for a second-order operator differential equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4, pp. 569-584
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A class of finite-difference schemes for solving an ill-posed Cauchy problem for a second-order linear differential equation with a sectorial operator in a Banach space is studied. Time-uniform estimates of the convergence rate and the error of such schemes are obtained. Previously known estimates are improved due to an optimal choice of initial data for a difference scheme.
@article{ZVMMF_2014_54_4_a2,
     author = {M. M. Kokurin},
     title = {Difference schemes for solving the {Cauchy} problem for a second-order operator differential equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {569--584},
     year = {2014},
     volume = {54},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a2/}
}
TY  - JOUR
AU  - M. M. Kokurin
TI  - Difference schemes for solving the Cauchy problem for a second-order operator differential equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 569
EP  - 584
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a2/
LA  - ru
ID  - ZVMMF_2014_54_4_a2
ER  - 
%0 Journal Article
%A M. M. Kokurin
%T Difference schemes for solving the Cauchy problem for a second-order operator differential equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 569-584
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a2/
%G ru
%F ZVMMF_2014_54_4_a2
M. M. Kokurin. Difference schemes for solving the Cauchy problem for a second-order operator differential equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4, pp. 569-584. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a2/

[1] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[2] Bakushinskii A. B., Kokurin M. Yu., Klyuchev V. V., “Ob otsenke skorosti skhodimosti raznostnykh metodov resheniya nekorrektnoi zadachi Koshi dlya lineinogo differentsialnogo uravneniya vtorogo poryadka v banakhovom prostranstve”, Vychisl. metody i programmirovanie, 11 (2010), 25–31

[3] Bakushinskii A. B., “Raznostnye skhemy dlya resheniya nekorrektnykh abstraktnykh zadach Koshi”, Differents. ur-niya, 7:10 (1971), 1876–1885

[4] Bakushinskii A. B., “Raznostnye metody resheniya nekorrektnykh zadach Koshi dlya evolyutsionnykh uravnenii v kompleksnom $B$-prostranstve”, Differents. ur-niya, 8:9 (1972), 1661–1668

[5] Bakushinskii A. B., Kokurin M. M., Kokurin M. Yu., “Ob odnom klasse raznostnykh skhem resheniya nekorrektnoi zadachi Koshi v banakhovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 52:3 (2012), 483–498

[6] Kokurin M. M., “Ob optimizatsii otsenok skorosti skhodimosti nekotorykh klassov raznostnykh skhem resheniya nekorrektnoi zadachi Koshi”, Vychisl. metody i programmirovanie, 14 (2013), 58–76

[7] Kokurin M. M., “Raznostnye skhemy resheniya abstraktnoi zadachi Koshi dlya uravneniya vtorogo poryadka”, Materialy X molodezhnoi nauchn. shkoly-konferentsii “Lobachevskie chteniya-2012”, Tr. Matem. tsentra im. N. I. Lobachevskogo, 45, Kazan. matem. ob-vo, Kazan, 2012, 105–107

[8] Bakushinskii A. B., Goncharskii A. V., Nekorrektnye zadachi. Chislennye metody i prilozheniya, Izd-vo Mosk. un-ta, M., 1989

[9] Edmunds D. E., Evans W. D., Spectral theory and differential operators, Clarendon Press, Oxford, 1987 | MR

[10] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[11] Stewart Bruca H., “Generation of analytic semigroups by strongly elliptic operators”, Transactions of the American Mat. Soc., 199 (1974), 141–162 | DOI | MR

[12] Agmon S., “On the Einegfunctions and on the Eigenvalues of General Elliptic Boundary Value Problems”, Comm. Pure and Applied Math., 15 (1962), 119–147 | DOI | MR

[13] Kozlov V. A., Mazya V. G., Fomin A. V., “Ob odnom iteratsionnom metode resheniya zadachi Koshi dlya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 31:1 (1991), 64–74 | MR

[14] Baumeister J., Leitão A., “On iterative methods for solving ill'posed problems modeled by partial differential equations”, J. Inverse and Ill'Posed Problems, 9:1 (2001), 13–29 | MR

[15] Lattes R., Lions Zh.-L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970 | MR

[16] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, BINOM, M., 2007

[17] Babushka I., Vitasek E., Prager M., Chislennye protsessy resheniya differentsialnykh uravnenii, Mir, M., 1969 | MR

[18] Shtetter Kh., Analiz metodov diskretizatsii dlya obyknovennykh differentsialnykh uravnenii, Mir, M., 1978 | MR

[19] Gekeler E., Discretization Methods for Stable Initial Value Problems, Springer, Berlin, 1984 | MR

[20] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Editorial URSS, M., 2004