$N$-soliton solutions, Bäcklund transformation and conservation laws for the integro-differential nonlinear Schrödinger equation from the isotropic inhomogeneous Heisenberg spin magnetic chain
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under investigation in this paper is an integro-differential nonlinear Schrödinger (IDNLS) equation, which is equivalent to the spin evolution equation of a classical in-homogeneous Heisenberg magnetic chain in the continuum limit. Based on the Hirota method, the bilinear form and $N$-soliton solution for the IDNLS equation are derived with the help of symbolic computation. Moreover, $N$-soliton solution for the IDNLS equation is expressed in terms of the double Wronskian and testified through the direct substitution into the bilinear form. Besides, the bilinear Bäcklund transformation and infinitely many conservation laws are also obtained for the IDNLS equation. Propagation characteristics and interaction behaviors of the solitons are discussed by analysis of such physical quantities as the soliton amplitude, width, velocity and initial phase. Interactions of the solitons are proved to be elastic through the asymptotic analysis. Effect of inhomogeneity on the interaction of the solitons is studied graphically.
@article{ZVMMF_2014_54_4_a10,
     author = {Pan Wang and Bo Tian and Wen-Jun Liu and Kun Sun},
     title = {$N$-soliton solutions, {B\"acklund} transformation and conservation laws for the integro-differential nonlinear {Schr\"odinger} equation from the isotropic inhomogeneous {Heisenberg} spin magnetic chain},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {720},
     year = {2014},
     volume = {54},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a10/}
}
TY  - JOUR
AU  - Pan Wang
AU  - Bo Tian
AU  - Wen-Jun Liu
AU  - Kun Sun
TI  - $N$-soliton solutions, Bäcklund transformation and conservation laws for the integro-differential nonlinear Schrödinger equation from the isotropic inhomogeneous Heisenberg spin magnetic chain
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 720
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a10/
LA  - en
ID  - ZVMMF_2014_54_4_a10
ER  - 
%0 Journal Article
%A Pan Wang
%A Bo Tian
%A Wen-Jun Liu
%A Kun Sun
%T $N$-soliton solutions, Bäcklund transformation and conservation laws for the integro-differential nonlinear Schrödinger equation from the isotropic inhomogeneous Heisenberg spin magnetic chain
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 720
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a10/
%G en
%F ZVMMF_2014_54_4_a10
Pan Wang; Bo Tian; Wen-Jun Liu; Kun Sun. $N$-soliton solutions, Bäcklund transformation and conservation laws for the integro-differential nonlinear Schrödinger equation from the isotropic inhomogeneous Heisenberg spin magnetic chain. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a10/

[1] A. Hubert, R. Schafer, Magnetic Domains, Springer-Verlag, Berlin, 1998

[2] V. K. Chandrasekar, S. N. Pandey, M. Senthilvelan, M. Lakshmanan, J. Math. Phys., 47 (2006), 023508 | DOI | MR | Zbl

[3] M. Vijayajayanthi, T. Kanna, M. Lakshmanan, “Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schrödinger equations”, Phys. Rev. A, 77 (2008), 013820, 18 pp. | DOI

[4] L. Kavitha, M. Daniel, “Integrability and soliton in a classical one dimensional site-dependent biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity”, J. Phys. A, 36 (2003), 10471–10492 | DOI | MR | Zbl

[5] M. Daniel, L. Kavitha, “Magnetization reversal through soliton flip in a biquadratic ferromagnet with varying exchange interactions”, Phys. Rev. B, 66 (2002), 184433, 6 pp. | DOI

[6] M. Bauer, R. Lopusnik, J. Farsbender, B. Hillebrands, “Magnetization reversal in ultrashort magnetic field pulses”, J. Magn. Magn. Mater., 218 (2000), 165–176 | DOI

[7] N. Papanicolaou, G. C. Psaltakis, “Bethe ansatz for two-magnon bound states in anisotropic magnetic chains of arbitrary spin”, Phys. Rev. B, 35 (1987), 342–351 | DOI

[8] M. Daniel, L. Kavitha, “Localized spin excitations in an anisotropic Heisenberg ferromagnet with Dzyaloshinskii–Moriya interactions”, Phys. Rev. B, 63 (2001), 172302, 4 pp. | DOI

[9] F. D. M. Haldane, “Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Neel state”, Phys. Rev. Lett., 50 (1983), 1153–1156 | DOI | MR

[10] M. Daniel, M. D. Kruskal, M. Lakshmanan, K. Nakamura, “Singularity structure analysis of the continuum Heisenberg spin chain with anisotropy and transverse field: Nonintegrability and chaos”, J. Math. Phys., 33 (1992), 771–776 | DOI | MR | Zbl

[11] Y. Kodama, M. J. Ablowitz, “Perturbations of solitons and solitary waves”, Stud. Appl. Math., 64 (1981), 225–245 | MR | Zbl

[12] A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, “Nonlinear phenomena”, Physica D, 3 (1981), 363–373 | DOI | Zbl

[13] J. D. Johnson, B. M. McCoy, “Low-temperature thermodynamics of the $|\Delta|\geqslant1$ Heisenberg–Ising ring”, Phys. Rev. A, 6 (1972), 1613–1626 | DOI

[14] W. Pesch, H. J. Mikeska, “Dynamical correlation functions in the $x-y$ model”, Z. Phys., 30 (1978), 177–182

[15] M. Daniel, J. Beula, “Soliton spin excitations and their perturbation in a generalized inhomogeneous Heisenberg ferromagnet”, Phys. Rev. B, 77 (2008), 144416, 14 pp. | DOI

[16] R. Balakrishnan, “On the inhomogeneous Heisenberg chain”, J. Phys. C, 15 (1982), L1305–L1308 | DOI

[17] M. Daniel, K. Porsezian, M. Lakshmanan, “On the dynamics of the radially symmetric Heisenberg ferromagnetic spin system”, J. Math. Phys., 35 (1994), 6498–6510 | DOI | MR | Zbl

[18] K. Porsezian, M. Daniel, M. Lakshmanan, “On the dynamics of the radially symmetric Heisenberg ferromagnetic spin system”, J. Math. Phys., 33 (1992), 1807–1816 | DOI | MR | Zbl

[19] A. R. Bishop, T. Schneider, Solitons and Condensed Matter Physics, Springer-Verlag, Berlin, 1978 | MR | Zbl

[20] S. P. Burtsev, V. E. Zakharov, A. V. Mikhailov, “Inverse scattering method with variable spectral parameter”, Theor. Math. Phys., 70 (1987), 227–240 | DOI | MR | Zbl

[21] L. Kavitha, M. Daniel, “Integrability and soliton in a classical one dimensional site dependent biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity”, J. Phys. A, 36 (2003), 10471–10492 | DOI | MR | Zbl

[22] M. Lakshmanan, R. K. Bullough, “Geometry of generalized nonlinear Schrödinger and Heisenberg ferromagnetic spin equations with linearly-dependent coefficients”, Phys. Lett. A, 80 (1980), 287–292 | DOI | MR

[23] G. L. Lamb, “Solitons on moving space curves”, J. Math. Phys., 18 (1977), 1654–1661 | DOI | MR | Zbl

[24] K. Porsezian, M. Lakshmanan, “On the dynamics of the radially symmetric Heisenberg ferromagnetic spin system”, J. Math. Phys., 32 (1991), 2923–2928 | DOI | MR | Zbl

[25] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14 (1973), 805–809 | DOI | MR | Zbl

[26] Z. Y. Sun, Y. T. Gao, X. Yu, Y. Liu, “Dynamics of bound vector solitons induced by stochastic perturbations: Soliton breakup and soliton switching”, Phys. Lett. A, 377 (2013), 45–48 | DOI | MR

[27] Z. Y. Sun, Y. T. Gao, X. Yu, Y. Liu, “Amplification of nonautonomous solitons in the Bose–Einstein condensates and nonlinear optics”, Europhys. Lett., 93 (2011), 40004, 6 pp. | DOI

[28] J. J. Nimmo, N. C. Freeman, “The use of Bäcklund transformations in obtaining AT-soliton solutions in Wronskian form”, J. Phys. A, 17 (1984), 1415–1424 | DOI | MR | Zbl

[29] R. Hirota, J. Satsuma, “N-soliton solution of the KdV equation with loss and nonuniformity terms”, J. Phys. Soc. Jpn., 41 (1976), 2141–2142 | DOI

[30] J. J. C. Nimmo, “A bilinear Bäcklund transformation for the nonlinear Schrödinger equation”, Phys. Lett. A, 99 (1983), 279–280 | DOI | MR

[31] N. C. Freeman, J. J. Nimmo, “Soliton solitons of the KdV and KP equations: The Wronskian technique”, Phys. Lett. A, 95 (1983), 1–3 | DOI | MR

[32] J. J. Nimmo, N. C. Freeman, “The use of Bäcklund transformations in obtaining N-soliton solutions in Wronskian form”, Phys. Lett. A, 95 (1983), 4–6 | DOI | MR

[33] M. Wadati, “Wave propagation in nonlinear lattice, I”, J. Phys. Soc. Jpn., 38 (1975), 673–680 | DOI | MR

[34] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering, Cambridge Univ. Press, New York, 1991 | MR

[35] K. Konno, H. Sanuki, Y. H. Ichikawa, “Conservation laws of nonlinear-evolution equations”, Prog. Theor. Phys., 52 (1974), 886–889 | DOI

[36] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Nonlinear evolution equations of physical significance”, Phys. Rev. Lett., 31 (1973), 125–127 | DOI | MR

[37] M. Wadati, K. Konno, Y. Ichikawa, “A generalization of inverse scattering method”, J. Phys. Soc. Jpn., 46 (1979), 1965–1966 | DOI | MR