@article{ZVMMF_2014_54_4_a10,
author = {Pan Wang and Bo Tian and Wen-Jun Liu and Kun Sun},
title = {$N$-soliton solutions, {B\"acklund} transformation and conservation laws for the integro-differential nonlinear {Schr\"odinger} equation from the isotropic inhomogeneous {Heisenberg} spin magnetic chain},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {720},
year = {2014},
volume = {54},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a10/}
}
TY - JOUR AU - Pan Wang AU - Bo Tian AU - Wen-Jun Liu AU - Kun Sun TI - $N$-soliton solutions, Bäcklund transformation and conservation laws for the integro-differential nonlinear Schrödinger equation from the isotropic inhomogeneous Heisenberg spin magnetic chain JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 720 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a10/ LA - en ID - ZVMMF_2014_54_4_a10 ER -
%0 Journal Article %A Pan Wang %A Bo Tian %A Wen-Jun Liu %A Kun Sun %T $N$-soliton solutions, Bäcklund transformation and conservation laws for the integro-differential nonlinear Schrödinger equation from the isotropic inhomogeneous Heisenberg spin magnetic chain %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 720 %V 54 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a10/ %G en %F ZVMMF_2014_54_4_a10
Pan Wang; Bo Tian; Wen-Jun Liu; Kun Sun. $N$-soliton solutions, Bäcklund transformation and conservation laws for the integro-differential nonlinear Schrödinger equation from the isotropic inhomogeneous Heisenberg spin magnetic chain. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a10/
[1] A. Hubert, R. Schafer, Magnetic Domains, Springer-Verlag, Berlin, 1998
[2] V. K. Chandrasekar, S. N. Pandey, M. Senthilvelan, M. Lakshmanan, J. Math. Phys., 47 (2006), 023508 | DOI | MR | Zbl
[3] M. Vijayajayanthi, T. Kanna, M. Lakshmanan, “Bright-dark solitons and their collisions in mixed N-coupled nonlinear Schrödinger equations”, Phys. Rev. A, 77 (2008), 013820, 18 pp. | DOI
[4] L. Kavitha, M. Daniel, “Integrability and soliton in a classical one dimensional site-dependent biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity”, J. Phys. A, 36 (2003), 10471–10492 | DOI | MR | Zbl
[5] M. Daniel, L. Kavitha, “Magnetization reversal through soliton flip in a biquadratic ferromagnet with varying exchange interactions”, Phys. Rev. B, 66 (2002), 184433, 6 pp. | DOI
[6] M. Bauer, R. Lopusnik, J. Farsbender, B. Hillebrands, “Magnetization reversal in ultrashort magnetic field pulses”, J. Magn. Magn. Mater., 218 (2000), 165–176 | DOI
[7] N. Papanicolaou, G. C. Psaltakis, “Bethe ansatz for two-magnon bound states in anisotropic magnetic chains of arbitrary spin”, Phys. Rev. B, 35 (1987), 342–351 | DOI
[8] M. Daniel, L. Kavitha, “Localized spin excitations in an anisotropic Heisenberg ferromagnet with Dzyaloshinskii–Moriya interactions”, Phys. Rev. B, 63 (2001), 172302, 4 pp. | DOI
[9] F. D. M. Haldane, “Nonlinear field theory of large-spin Heisenberg antiferromagnets: Semiclassically quantized solitons of the one-dimensional easy-axis Neel state”, Phys. Rev. Lett., 50 (1983), 1153–1156 | DOI | MR
[10] M. Daniel, M. D. Kruskal, M. Lakshmanan, K. Nakamura, “Singularity structure analysis of the continuum Heisenberg spin chain with anisotropy and transverse field: Nonintegrability and chaos”, J. Math. Phys., 33 (1992), 771–776 | DOI | MR | Zbl
[11] Y. Kodama, M. J. Ablowitz, “Perturbations of solitons and solitary waves”, Stud. Appl. Math., 64 (1981), 225–245 | MR | Zbl
[12] A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, “Nonlinear phenomena”, Physica D, 3 (1981), 363–373 | DOI | Zbl
[13] J. D. Johnson, B. M. McCoy, “Low-temperature thermodynamics of the $|\Delta|\geqslant1$ Heisenberg–Ising ring”, Phys. Rev. A, 6 (1972), 1613–1626 | DOI
[14] W. Pesch, H. J. Mikeska, “Dynamical correlation functions in the $x-y$ model”, Z. Phys., 30 (1978), 177–182
[15] M. Daniel, J. Beula, “Soliton spin excitations and their perturbation in a generalized inhomogeneous Heisenberg ferromagnet”, Phys. Rev. B, 77 (2008), 144416, 14 pp. | DOI
[16] R. Balakrishnan, “On the inhomogeneous Heisenberg chain”, J. Phys. C, 15 (1982), L1305–L1308 | DOI
[17] M. Daniel, K. Porsezian, M. Lakshmanan, “On the dynamics of the radially symmetric Heisenberg ferromagnetic spin system”, J. Math. Phys., 35 (1994), 6498–6510 | DOI | MR | Zbl
[18] K. Porsezian, M. Daniel, M. Lakshmanan, “On the dynamics of the radially symmetric Heisenberg ferromagnetic spin system”, J. Math. Phys., 33 (1992), 1807–1816 | DOI | MR | Zbl
[19] A. R. Bishop, T. Schneider, Solitons and Condensed Matter Physics, Springer-Verlag, Berlin, 1978 | MR | Zbl
[20] S. P. Burtsev, V. E. Zakharov, A. V. Mikhailov, “Inverse scattering method with variable spectral parameter”, Theor. Math. Phys., 70 (1987), 227–240 | DOI | MR | Zbl
[21] L. Kavitha, M. Daniel, “Integrability and soliton in a classical one dimensional site dependent biquadratic Heisenberg spin chain and the effect of nonlinear inhomogeneity”, J. Phys. A, 36 (2003), 10471–10492 | DOI | MR | Zbl
[22] M. Lakshmanan, R. K. Bullough, “Geometry of generalized nonlinear Schrödinger and Heisenberg ferromagnetic spin equations with linearly-dependent coefficients”, Phys. Lett. A, 80 (1980), 287–292 | DOI | MR
[23] G. L. Lamb, “Solitons on moving space curves”, J. Math. Phys., 18 (1977), 1654–1661 | DOI | MR | Zbl
[24] K. Porsezian, M. Lakshmanan, “On the dynamics of the radially symmetric Heisenberg ferromagnetic spin system”, J. Math. Phys., 32 (1991), 2923–2928 | DOI | MR | Zbl
[25] R. Hirota, “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14 (1973), 805–809 | DOI | MR | Zbl
[26] Z. Y. Sun, Y. T. Gao, X. Yu, Y. Liu, “Dynamics of bound vector solitons induced by stochastic perturbations: Soliton breakup and soliton switching”, Phys. Lett. A, 377 (2013), 45–48 | DOI | MR
[27] Z. Y. Sun, Y. T. Gao, X. Yu, Y. Liu, “Amplification of nonautonomous solitons in the Bose–Einstein condensates and nonlinear optics”, Europhys. Lett., 93 (2011), 40004, 6 pp. | DOI
[28] J. J. Nimmo, N. C. Freeman, “The use of Bäcklund transformations in obtaining AT-soliton solutions in Wronskian form”, J. Phys. A, 17 (1984), 1415–1424 | DOI | MR | Zbl
[29] R. Hirota, J. Satsuma, “N-soliton solution of the KdV equation with loss and nonuniformity terms”, J. Phys. Soc. Jpn., 41 (1976), 2141–2142 | DOI
[30] J. J. C. Nimmo, “A bilinear Bäcklund transformation for the nonlinear Schrödinger equation”, Phys. Lett. A, 99 (1983), 279–280 | DOI | MR
[31] N. C. Freeman, J. J. Nimmo, “Soliton solitons of the KdV and KP equations: The Wronskian technique”, Phys. Lett. A, 95 (1983), 1–3 | DOI | MR
[32] J. J. Nimmo, N. C. Freeman, “The use of Bäcklund transformations in obtaining N-soliton solutions in Wronskian form”, Phys. Lett. A, 95 (1983), 4–6 | DOI | MR
[33] M. Wadati, “Wave propagation in nonlinear lattice, I”, J. Phys. Soc. Jpn., 38 (1975), 673–680 | DOI | MR
[34] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering, Cambridge Univ. Press, New York, 1991 | MR
[35] K. Konno, H. Sanuki, Y. H. Ichikawa, “Conservation laws of nonlinear-evolution equations”, Prog. Theor. Phys., 52 (1974), 886–889 | DOI
[36] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Nonlinear evolution equations of physical significance”, Phys. Rev. Lett., 31 (1973), 125–127 | DOI | MR
[37] M. Wadati, K. Konno, Y. Ichikawa, “A generalization of inverse scattering method”, J. Phys. Soc. Jpn., 46 (1979), 1965–1966 | DOI | MR