@article{ZVMMF_2014_54_4_a1,
author = {A. S. Leonov},
title = {Can an a priori error estimate for an approximate solution of an ill-posed problem be comparable with the error in data?},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {562--568},
year = {2014},
volume = {54},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a1/}
}
TY - JOUR AU - A. S. Leonov TI - Can an a priori error estimate for an approximate solution of an ill-posed problem be comparable with the error in data? JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 562 EP - 568 VL - 54 IS - 4 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a1/ LA - ru ID - ZVMMF_2014_54_4_a1 ER -
%0 Journal Article %A A. S. Leonov %T Can an a priori error estimate for an approximate solution of an ill-posed problem be comparable with the error in data? %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 562-568 %V 54 %N 4 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a1/ %G ru %F ZVMMF_2014_54_4_a1
A. S. Leonov. Can an a priori error estimate for an approximate solution of an ill-posed problem be comparable with the error in data?. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4, pp. 562-568. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a1/
[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR
[2] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR
[3] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR
[4] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, Izd-vo SO AN SSSR, Novosibirsk, 1962 | MR
[5] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR
[6] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR
[7] Tanana V. P., Rekant M. A., Yanchenko S. I., Optimizatsiya metodov resheniya operatornykh uravnenii, Izd-vo Uralskogo un-ta, Sverdlovsk, 1987 | MR
[8] Engl H. W., Hanke M., Neubauer A., Regularization of inverse problems, Kluwer Academic Publ., Dordrecht, 1996 | MR
[9] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002
[10] Bakushinsky A. B., Kokurin M. Yu., Iterative methods for approximate solution of inverse problems, Srpinger, Dordrecht, 2004, 292 pp. | MR
[11] Vinokurov V. A., “O pogreshnosti priblizhennogo resheniya lineinykh obratnykh zadach”, Dokl. AN SSSR, 246:4 (1979), 792–793 | MR
[12] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987 | MR
[13] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR
[14] Tikhonov A. N., Leonov A. S., Yagola A. G., Nelineinye nekorrektnye zadachi, Nauka, M., 1995 | MR
[15] Edvards R., Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969
[16] Leonov A. S., Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, URSS, M., 2010