On the properties of a new tensor product of matrices
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4, pp. 547-561
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Previously, the author introduced a new tensor product of matrices according to which the matrix of the discrete Walsh–Paley transform can be represented as a power of the second-order discrete Walsh transform matrix $H$ with respect to this product. This power is an analogue of the representation of the Sylvester–Hadamard matrix in the form of a Kronecker power of $H$. The properties of the new tensor product of matrices are examined and compared with those of the Kronecker product. An algebraic structure with the matrix $H$ used as a generator element and with these two tensor products of matrices is constructed and analyzed. It is shown that the new tensor product operation proposed can be treated as a convenient mathematical language for describing the foundations of discrete Fourier analysis.
@article{ZVMMF_2014_54_4_a0,
     author = {M. S. Bespalov},
     title = {On the properties of a new tensor product of matrices},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {547--561},
     year = {2014},
     volume = {54},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a0/}
}
TY  - JOUR
AU  - M. S. Bespalov
TI  - On the properties of a new tensor product of matrices
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 547
EP  - 561
VL  - 54
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a0/
LA  - ru
ID  - ZVMMF_2014_54_4_a0
ER  - 
%0 Journal Article
%A M. S. Bespalov
%T On the properties of a new tensor product of matrices
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 547-561
%V 54
%N 4
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a0/
%G ru
%F ZVMMF_2014_54_4_a0
M. S. Bespalov. On the properties of a new tensor product of matrices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 4, pp. 547-561. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_4_a0/

[1] Malozemov V. N., Masharskii S. M., Osnovy diskretnogo garmonicheskogo analiza, Lan, SPb., 2012

[2] Trakhtman A. M., Trakhtman V. A., Osnovy teorii diskretnykh signalov na konechnykh intervalakh, Sov. radio, M., 1975

[3] Akhmed N., Rao K. R., Ortogonalnye preobrazovaniya pri obrabotke tsifrovykh signalov, Svyaz, M., 1980

[4] Zalmanzon L. A., Preobrazovaniya Fure, Uolsha, Khaara i ikh primeneniya v upravlenii, svyazi i drugikh oblastyakh, Nauka, M., 1989 | MR

[5] Bespalov M. S., Matematicheskie metody v informatike i vychislitelnoi tekhnike, V 2-kh ch., v. 2, Vvedenie v prikladnoi garmonicheskii analiz, VlGU, Vladimir, 2007

[6] Malozemov V. N., Tretyakov A. A., “Sektsionirovanie, ortogonalnost i perestanovki”, Vestn. SPb. un-ta, Ser. 1, 1999, no. 1, 16–21

[7] Bespalov M. S., “Construction and properties of discrete walsh transform matrices”, Walsh and Dyadic Analysis, Proc. of the Workshop Dedicated to the Memory of J. E. Gibbs (Nis, Serbia, October 18–19, 2007), Univ. of Nis, Faculty of Electronics, 2008, 195–208

[8] Bespalov M. V., “Diskretnoe preobrazovanie Uolsha kak stepen dlya novogo proizvedeniya matrits”, Sovr. probl. teorii funktsii i ikh prilozheniya, Tezisy dokl. 14-i Saratovsk. zimnei shk., posv. P. L. Ulyanovu, SGU, Saratov, 2008, 13

[9] Bespalov M. S., “Sobstvennye podprostranstva diskretnogo preobrazovaniya Uolsha”, Probl. peredachi informatsii, 46:3 (2010), 60–79 | MR

[10] Gonorovskii I. S., Radiotekhnicheskie tsepi i signaly, Sov. radio, M., 1977

[11] Bespalov M. S., “O postroenii multiplikativnogo preobrazovaniya Fure i ego diskretnogo analoga”, Sb. trudov MIEG, 1983, 57–64 | MR

[12] Malozemov V. N., Masharskii S. M., “Obobschennye veivletnye bazisy, svyazannye s diskretnym preobrazovaniem Vilenkina–Krestensona”, Algebra i analiz, 13:1 (2001), 111–157 | MR

[13] Bespalov M. S., “Diskretnoe preobrazovanie Krestensona”, Probl. peredachi informatsii, 46:4 (2010), 91–115 | MR

[14] Efimov A. V., Zolotareva S. Yu., “Multiplikativnyi integral Fure i ego diskretnye analogi”, Anal. Math., 5 (1979), 179–199 | DOI | MR

[15] Efimov A. V., Pospelov A. S., Umnyashkin S. V., “Nekotorye svoistva multiplikativnykh ortonormirovannykh sistem, ispolzuemye v tsifrovoi obrabotke signalov”, Tr. MIAN, 219, 1997, 137–182 | MR

[16] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha: Teoriya i primeneniya, Nauka, M., 1987 | MR

[17] Bespalov M. S., “Diskretnye funktsii Vilenkina”, Seminar “DNA CAGD”, Izbr. dokl. 7 fevralya 2013 g., 11 pp. http://dha.spb.ru/reps13.shtml#0207

[18] Johnson J., Johnson R. W., Rodriguez D., Tolimieri R., “A methodology for designing, modifying and implementing Fourier transform algorithms on various architectures”, Circuits, Systems and Signal Proc., 9:4 (1990), 449–500 | DOI | MR

[19] Malozemov V. N., Prosekov O. V., “Faktorizatsiya Kuli–Tyuki matritsy Fure”, Izbr. glavy diskretnogo garmonicheskogo analiza i geometricheskogo modelirovaniya, ed. V. N. Malozemov, SPbGU, SPb., 2009, 20–29

[20] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR

[21] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[22] Matematicheskaya entsiklopediya, V 5 t., Sov. entsiklopediya, M., 1984

[23] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969 | MR

[24] Sylvester J. J., “Thoughts on inverse orthogonal matrices, simultaneous simg-successions, and tessalated pavements in two or more colours, with applications to Newton's rule, ornamental tile-work, and the theory of numbers”, Phil. Mag., 34 (1867), 461–475

[25] Schipp F., Wade W. R., Simon P., Pal J., Walsh series. An introduction to dyadic harmonic analysis, Acad. Kiado, Budapest, 1990 | MR

[26] Paley R. E. A. C., “A remarkable series of orthogonal functions. I; II”, Proc. Lond. Math. Soc., Ser. II, 34 (1932), 241–264 ; 265–279 | DOI

[27] Shipp F., “O nekotorykh perestanovkakh ryadov po sisteme Uolsha”, Matem. zametki, 18:2 (1975), 193–201 | MR

[28] Bespalov M. S., Kazakova S. S., “Klassifikatsiya diskretnykh preobrazovanii Uolsha”, Mezhdunar. konfer. po matem. teorii upravleniya i mekhan., Tezisy dokl. (Suzdal, 2011), 45–47