@article{ZVMMF_2014_54_3_a9,
author = {R. Z. Dautov and E. M. Fedotov},
title = {Abstract theory of hybridizable discontinuous {Galerkin} methods for second-order quasilinear elliptic problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {463--480},
year = {2014},
volume = {54},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a9/}
}
TY - JOUR AU - R. Z. Dautov AU - E. M. Fedotov TI - Abstract theory of hybridizable discontinuous Galerkin methods for second-order quasilinear elliptic problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 463 EP - 480 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a9/ LA - ru ID - ZVMMF_2014_54_3_a9 ER -
%0 Journal Article %A R. Z. Dautov %A E. M. Fedotov %T Abstract theory of hybridizable discontinuous Galerkin methods for second-order quasilinear elliptic problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 463-480 %V 54 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a9/ %G ru %F ZVMMF_2014_54_3_a9
R. Z. Dautov; E. M. Fedotov. Abstract theory of hybridizable discontinuous Galerkin methods for second-order quasilinear elliptic problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 463-480. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a9/
[1] Cockburn B., “Discontinuous Galerkin methods”, Z. Angew. Math. Mech., 83 (2003), 731–754 | DOI | MR | Zbl
[2] Arnold D. N., Brezzi F., Cockburn B., Marini L. D., “Unified analysis of discontinuous Galerkin methods for elliptic problems”, SIAM J. Numer. Anal., 39:5 (2002), 1749–1779 | DOI | MR | Zbl
[3] Cockburn B., Gopalakrishnan J., Lazarov R., “Unified hydridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems”, SIAM J. Numer. Anal., 47:2 (2009), 1319–1365 | DOI | MR | Zbl
[4] Arnold D. N., Brezzi F., “Mixed and non-conforming finite element methods: implementation, post-processing and error estimates”, Math. Modell. Numer. Anal., 19:1 (1985), 7–32 | MR | Zbl
[5] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Nauka, M., 1978
[6] S'yarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, M., 1980
[7] Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer-Verlag, New York, 1991 | MR | Zbl
[8] Brenner S. C., “Poincare–Friedrichs inequalities for piecewise $H^1$ functions”, SIAM J. Numer. Anal., 41 (2003), 306–324 | DOI | MR | Zbl
[9] Lasis A., Süli E., Poincaré-type inequalities for broken Sobolev spaces, Technical Report 03/10, Oxford University Computing Laboratory, Oxford, England, 2003
[10] Pietro D., Ern A., “Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations”, Math. Comput., 79:271 (2010), 1303–1330 | DOI | MR | Zbl
[11] Brenner C., Wang K., Zhao J., “Poincare–Friedrichs inequalities for piecewise $H^2$ functions”, Numerical functional analysis and optimization, 25:5–6 (2004), 463–478 | DOI | MR | Zbl
[12] Raviart P.-A., Thomas J. M., “A mixed finite element method for 2-ond order elliptic problems”, Lecture Notes in Math., 606, 1977, 292–315 | DOI | MR | Zbl
[13] Brezzi F., Douglas J., Marini L. D., “Two families of mixed finite elements for second order elliptic problems”, Numer. Math., 47 (1985), 217–235 | DOI | MR | Zbl
[14] Karchevskii M. M., Lyashko A. D., Raznostnye skhemy dlya nelineinykh uravnenii matematicheskoi fiziki, Izd-vo KGU, Kazan, 1976
[15] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR