On a modification of the FitzHugh–Nagumo neuron model
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 430-449
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A singularly perturbed system of ordinary differential equations with a fast and a slow variable is proposed, which is a modification of the well-known FitzHugh–Nagumo model from neuroscience. The existence and stability of a nonclassical relaxation cycle in this system are studied. The slow component of the cycle is asymptotically close to a discontinuous function, while the fast component is a $\delta$-like function.
@article{ZVMMF_2014_54_3_a7,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {On a modification of the {FitzHugh{\textendash}Nagumo} neuron model},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {430--449},
     year = {2014},
     volume = {54},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a7/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - On a modification of the FitzHugh–Nagumo neuron model
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 430
EP  - 449
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a7/
LA  - ru
ID  - ZVMMF_2014_54_3_a7
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T On a modification of the FitzHugh–Nagumo neuron model
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 430-449
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a7/
%G ru
%F ZVMMF_2014_54_3_a7
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. On a modification of the FitzHugh–Nagumo neuron model. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 430-449. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a7/

[1] FitzHugh R., “Impluses and physiological states in theoretical models of nerve membrane”, Biophys. J., 1 (1961), 445–466 | DOI

[2] Hodgkin A. L., Huxley A. F., “A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol., 117 (1952), 500–544

[3] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proc. IRE, 50 (1962), 2061–2070 | DOI

[4] Khaikin S., Neironnye seti. Polnyi kurs, Izdatelskii dom “Vilyams”, M., 2006

[5] Izhikevich E. M., Dynamical systems in neuroscience: the geometry of excitability and bursting, The MIT Press, Cambridge–London, 2007 | MR

[6] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR

[7] Mischenko E. F., Kolesov Yu. S., Kolesov A. Yu., Rozov N. Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995 | MR

[8] Tikhonov A. N., “Sistemy differentsialnykh uravnenii, soderzhaschie malye parametry pri proizvodnykh”, Matem. sb., 31:3 (1952), 575–586 | Zbl

[9] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Fenomen bufernosti v neirodinamike”, Dokl. AN, 443:2 (2012), 168–172 | MR | Zbl

[10] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Diskretnye avtovolny v neironnykh sistemakh”, Zh. vychisl. matem. i matem. fiz., 52:5 (2012), 840–858 | Zbl

[11] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaksatsionnye avtokolebaniya v setyakh Khopfilda s zapazdyvaniem”, Izv. RAN. Ser. matem., 77:2 (2013), 53–96 | DOI | MR | Zbl