Potential optimality in multicriterial optimization
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 415-424
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The relation between Pareto, Slater, Geoffrion, and potential optimality is investigated for basic classes of value functions in multicriterial optimization problems.
@article{ZVMMF_2014_54_3_a5,
     author = {V. V. Podinovski},
     title = {Potential optimality in multicriterial optimization},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {415--424},
     year = {2014},
     volume = {54},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a5/}
}
TY  - JOUR
AU  - V. V. Podinovski
TI  - Potential optimality in multicriterial optimization
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 415
EP  - 424
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a5/
LA  - ru
ID  - ZVMMF_2014_54_3_a5
ER  - 
%0 Journal Article
%A V. V. Podinovski
%T Potential optimality in multicriterial optimization
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 415-424
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a5/
%G ru
%F ZVMMF_2014_54_3_a5
V. V. Podinovski. Potential optimality in multicriterial optimization. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 415-424. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a5/

[1] Hazen G. B., “Partial information, dominance, and potential optimality in multiattribute utility theory”, Operat. Research, 34 (1986), 296–310 | DOI | MR | Zbl

[2] Eum E. S., Park K. S., Kim S. H., “Establishing dominance and potential optimality in multi-criteria decision analysis with imprecise weight and value”, Comput. Orerat. Research, 28 (2001), 397–409 | DOI | Zbl

[3] White D. J., “Notes in decision theory: Optimality and efficiency, II”, European J. Operat. Research, 4 (1980), 426–427 | DOI | MR | Zbl

[4] Podinovskii V. V., “O vzaimosvyazi ponyatii potentsialnoi optimalnosti i nedominiruemosti”, Avtomatika i telemekhan., 2012, no. 1, 184–187

[5] Podinovski V. V., “Non-dominance and potential optimality for partial preference relations”, European J. Operat. Research, 229 (2013), 482–486 | DOI | MR

[6] Podinovski V. V., “Potential optimality of Pareto optima”, Proc. Comput. Sci., 17 (2013), 1107–1112 | DOI

[7] Lotov A. V., Pospelova I. I., Mnogokriterialnye zadachi prinyatiya reshenii, Uchebnoe posobie, Izd. otdel f-ta VMiK MGU; Maks Press, M., 2008

[8] Szpilrajn E., “Sur l'extension de l'ordre partiel”, Fundamenta Math., 16 (1930), 386–389 | Zbl

[9] Fuks L., Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965 | MR

[10] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Fizmatlit, M., 1982

[11] Karlin S., Matematicheskie metody v teorii igr, programmirovanii i ekonomike, Per. s angl., Mir, M., 1964 | Zbl

[12] Yu P. L., “Cone convexity, cone extreme points, and non-dominated solutions in decision problems with multi-objectives”, J. Optimizat. Theory and Appl., 14 (1974), 319–377 | DOI | MR | Zbl

[13] Geoffrion A. M., “Proper efficiency and the theory of vector maximization”, J. Math. Analys. Applicat., 22:3 (1968), 618–630 | DOI | MR | Zbl

[14] Rios-Insua D., French S., “A framework for sensitivity analysis in discrete multi-objective decision-making”, European J. Operat. Research, 5 (1991), 176–190 | DOI

[15] Rokafellar R., Vypuklyi analiz, Per. s angl., Mir, M., 1973