Control of ellipsoidal trajectories: Theory and numerical results
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 404-414
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An integral functional is optimized over set-valued trajectories in a differential motion control model under state constraints. The motion trajectories are assumed to be ellipsoid-valued. The construction relies on a suitable version of Hamiltonian formalism. A key point is that the solutions are described as matrix functions in terms of tensor analysis. The approach is especially efficient as applied to high-dimensional systems.
@article{ZVMMF_2014_54_3_a4,
     author = {A. B. Kurzhanski and A. I. Mesyats},
     title = {Control of ellipsoidal trajectories: {Theory} and numerical results},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {404--414},
     year = {2014},
     volume = {54},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a4/}
}
TY  - JOUR
AU  - A. B. Kurzhanski
AU  - A. I. Mesyats
TI  - Control of ellipsoidal trajectories: Theory and numerical results
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 404
EP  - 414
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a4/
LA  - ru
ID  - ZVMMF_2014_54_3_a4
ER  - 
%0 Journal Article
%A A. B. Kurzhanski
%A A. I. Mesyats
%T Control of ellipsoidal trajectories: Theory and numerical results
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 404-414
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a4/
%G ru
%F ZVMMF_2014_54_3_a4
A. B. Kurzhanski; A. I. Mesyats. Control of ellipsoidal trajectories: Theory and numerical results. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 404-414. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a4/

[1] Kurzhanski A. B., Valyi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997 | MR

[2] Kurzhanski A. B., Varaiya P., “On synthesizing target controls under obstacle and collision avoidance”, J. Franklin Institute, 347:1, February (2010), 130–145 | DOI | MR

[3] Boel R., van Schuppen I. H., “Control of the observation matrix for control purposes”, Proc. of the 19th Internat. Symposium on Math. Theory of Networks and Systems (Budapest, Hungary, 2010), 1261–1268

[4] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977 | MR | Zbl

[5] Chebunin I. V., “Usloviya upravlyaemosti dlya uravneniya Rikatti”, Differents. ur-niya, 39:12 (2003), 1654–1661 | MR | Zbl

[6] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969 | MR | Zbl

[7] Mischenko A. S., Fomenko A. T., Kurs differentsialnoi geometrii i topologii, Faktorial, M., 2000

[8] Rashevskii P. K., Rimanova geometriya i tenzornyi analiz, Nauka, M., 1967 | MR

[9] Kurzhanski A. B., Varaiya P., “Optimization of output feedback control under set-membership unicertainty”, J. Optimizat. Theory and Appl., 151 (2011), 11–32 | DOI | MR | Zbl

[10] Fan K., “Minimax theorems”, Proc. Nat. Acad. Sci., 39:1 (1953), 42–47 | DOI | MR

[11] Kurzhanskii A. B., Mesyats A. I., “Optimalnoe upravlenie ellipsoidalnymi dvizheniyami”, Differents. ur-niya, 48:12 (2012), 1525–1532 | MR

[12] Subbotin A. I., Generalized solutions of first-order PDE's. The dynamic optimization perspective, SCFA, Boston, 1995 | MR

[13] Fleming W. H., Soner H. M., Controlled Markov processes and viscosity solutions, Springer-Verlag, New York, 1993 | MR | Zbl

[14] Vasin V. V., Eremin I. I., Operators and iterative processes of Fejer type, Gruyter, Berlin, 2009 | MR | Zbl

[15] Han S.-P., Mangasarian O. L., “Exact penalty functions in nonlinear programming”, Math. Programming, 1979, no. 17, 251–269 | DOI | MR | Zbl

[16] Strassen V., “Gaussian elimination is not optimal”, Numerische Mathematik, 1969, no. 13, 354–356 | DOI | MR | Zbl

[17] Coppersmith D., Winograd S., “Matrix multiplication via arithmetic progressions”, J. Symbolic Computation, 1990, no. 9, 251–280 | DOI | MR | Zbl