On the sensitivity of a Euclidean projection
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 392-403
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The structure and behavior of Euclidean projections of a point onto a set defined by parametric constraints is studied. Under the Mangasarian–Fromovitz constraint qualification, it is shown that the projection is locally unique and continuous and, if the feasible set is constant, locally Lipschitz continuous as well. Quantitative results are obtained characterizing the asymptotic behavior of projections under perturbations in a given direction.
@article{ZVMMF_2014_54_3_a3,
     author = {A. F. Izmailov and A. S. Kurennoy},
     title = {On the sensitivity of a {Euclidean} projection},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {392--403},
     year = {2014},
     volume = {54},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a3/}
}
TY  - JOUR
AU  - A. F. Izmailov
AU  - A. S. Kurennoy
TI  - On the sensitivity of a Euclidean projection
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 392
EP  - 403
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a3/
LA  - ru
ID  - ZVMMF_2014_54_3_a3
ER  - 
%0 Journal Article
%A A. F. Izmailov
%A A. S. Kurennoy
%T On the sensitivity of a Euclidean projection
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 392-403
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a3/
%G ru
%F ZVMMF_2014_54_3_a3
A. F. Izmailov; A. S. Kurennoy. On the sensitivity of a Euclidean projection. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 392-403. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a3/

[1] Martínez J. M., Pilotta E. A., “Inexact restoration algorithms for constrained optimization”, J. Optim. Theory Appl., 104 (2000), 135–163 | DOI | MR | Zbl

[2] Martínez J. M., “Inexact restoration method with Lagrangian tangent decrease and new merit function for non-linear programming”, J. Optim. Theory Appl., 111 (2001), 39–58 | DOI | MR | Zbl

[3] Martínez J. M., Pilotta E. A., “Inexact restoration methods for nonlinear programming: advances and perspectives”, Optimization and Control with Applications, Springer, New York, 2005, 271–292 | MR

[4] Birgin E. G., Martínez J. M., “Local convergence of an inexact-restoration method and numerical experiments”, J. Optim. Theory Appl., 127 (2005), 229–247 | DOI | MR | Zbl

[5] Fischer A., Friedlander A., “A new line search inexact restoration approach for nonlinear programming”, Comput. Appl., 46 (2010), 333–346 | DOI | MR | Zbl

[6] Fernández D., Pilotta E. A., Torres G. A., “An inexact restoration strategy for the globalization of the sSQR method”, Comput. Optim. Appl., 2012 | DOI | MR

[7] Bauschke H. H., Borwein J. M., “On projection algorithms for solving convex feasibility problems”, SIAM Review, 38 (1996), 367–426 | DOI | MR | Zbl

[8] Corvellec J., Flåm S. D., “Non-convex feasibility problems and proximal point methods”, Optimization Methods and Software, 19 (2004), 3–14 | DOI | MR | Zbl

[9] Bonnans J. F., Shapiro A., Perturbation analysis of optimization problems, Springer-Verlag, New York, 2000 | MR | Zbl

[10] Izmailov A. F., Chuvstvitelnost v optimizatsii, Fizmatlit, M., 2006

[11] Robinson S. M., “Generalized equations and their solutions. Part II: Applications to nonlinear programming”, Math. Program. Study, 19 (1982), 200–221 | DOI | MR | Zbl

[12] Lu S., “Implications of the constant rank constraint qualification”, Math. Program., 126 (2011), 365–392 | DOI | MR | Zbl

[13] Janin R., “Directional derivative of the marginal function in nonlinear programming”, Math. Program. Stud., 21 (1984), 110–126 | DOI | MR | Zbl

[14] Solodov M. V., Constraint qualifications. Wiley Encyclopedia of Operations Research and Management Science, John Wiley Sons, Inc., Hoboken, 2010