@article{ZVMMF_2014_54_3_a3,
author = {A. F. Izmailov and A. S. Kurennoy},
title = {On the sensitivity of a {Euclidean} projection},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {392--403},
year = {2014},
volume = {54},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a3/}
}
A. F. Izmailov; A. S. Kurennoy. On the sensitivity of a Euclidean projection. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 392-403. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a3/
[1] Martínez J. M., Pilotta E. A., “Inexact restoration algorithms for constrained optimization”, J. Optim. Theory Appl., 104 (2000), 135–163 | DOI | MR | Zbl
[2] Martínez J. M., “Inexact restoration method with Lagrangian tangent decrease and new merit function for non-linear programming”, J. Optim. Theory Appl., 111 (2001), 39–58 | DOI | MR | Zbl
[3] Martínez J. M., Pilotta E. A., “Inexact restoration methods for nonlinear programming: advances and perspectives”, Optimization and Control with Applications, Springer, New York, 2005, 271–292 | MR
[4] Birgin E. G., Martínez J. M., “Local convergence of an inexact-restoration method and numerical experiments”, J. Optim. Theory Appl., 127 (2005), 229–247 | DOI | MR | Zbl
[5] Fischer A., Friedlander A., “A new line search inexact restoration approach for nonlinear programming”, Comput. Appl., 46 (2010), 333–346 | DOI | MR | Zbl
[6] Fernández D., Pilotta E. A., Torres G. A., “An inexact restoration strategy for the globalization of the sSQR method”, Comput. Optim. Appl., 2012 | DOI | MR
[7] Bauschke H. H., Borwein J. M., “On projection algorithms for solving convex feasibility problems”, SIAM Review, 38 (1996), 367–426 | DOI | MR | Zbl
[8] Corvellec J., Flåm S. D., “Non-convex feasibility problems and proximal point methods”, Optimization Methods and Software, 19 (2004), 3–14 | DOI | MR | Zbl
[9] Bonnans J. F., Shapiro A., Perturbation analysis of optimization problems, Springer-Verlag, New York, 2000 | MR | Zbl
[10] Izmailov A. F., Chuvstvitelnost v optimizatsii, Fizmatlit, M., 2006
[11] Robinson S. M., “Generalized equations and their solutions. Part II: Applications to nonlinear programming”, Math. Program. Study, 19 (1982), 200–221 | DOI | MR | Zbl
[12] Lu S., “Implications of the constant rank constraint qualification”, Math. Program., 126 (2011), 365–392 | DOI | MR | Zbl
[13] Janin R., “Directional derivative of the marginal function in nonlinear programming”, Math. Program. Stud., 21 (1984), 110–126 | DOI | MR | Zbl
[14] Solodov M. V., Constraint qualifications. Wiley Encyclopedia of Operations Research and Management Science, John Wiley Sons, Inc., Hoboken, 2010