@article{ZVMMF_2014_54_3_a2,
author = {Buong Nguyen and Dinh Dung Nguyen},
title = {A regularized parameter choice in regularization for a common solution of a finite system of ill-posed equations involving {Lipschitz} continuous and accretive mappings},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {391},
year = {2014},
volume = {54},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a2/}
}
TY - JOUR AU - Buong Nguyen AU - Dinh Dung Nguyen TI - A regularized parameter choice in regularization for a common solution of a finite system of ill-posed equations involving Lipschitz continuous and accretive mappings JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 391 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a2/ LA - en ID - ZVMMF_2014_54_3_a2 ER -
%0 Journal Article %A Buong Nguyen %A Dinh Dung Nguyen %T A regularized parameter choice in regularization for a common solution of a finite system of ill-posed equations involving Lipschitz continuous and accretive mappings %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 391 %V 54 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a2/ %G en %F ZVMMF_2014_54_3_a2
Buong Nguyen; Dinh Dung Nguyen. A regularized parameter choice in regularization for a common solution of a finite system of ill-posed equations involving Lipschitz continuous and accretive mappings. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a2/
[1] E. F. Browder, “Nonlinear mapping of nonexpansive and accretive type in Banach spaces”, Trans. Am. Math. Soc., 73 (1967), 875–882 | MR | Zbl
[2] Ya. I. Alber, “On solution by the method of regularization for operator equation of the first kind involving accretive mappings in Banach spaces”, Differ. Equations SSSR, 11 (1975), 2242–2248 | MR
[3] M. Haltmeier, R. Kowar, A. Leitao, O. Scherzer, “Kaczmarz methods for nonlinear ill-posed equations. I: Convergence analysis”, Inverse Probl. Imaging, 1 (2007), 289–298 | DOI | MR | Zbl
[4] A. D. Cezaro, M. Haltmeier, A. Leitao, O. Scherzer, “On steepest-descent-Kaczmarz method for regularizing systems of nonlinear ill-posed equations”, Appl. Math. Comput., 202 (2008), 596–607 | DOI | MR | Zbl
[5] J. Baumeister, B. Kaltenbacher, A. Leitao, “On Levenberg-Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed equations”, Inverse Probl. Imaging, 4 (2010), 335–350 | DOI | MR | Zbl
[6] A. D. Cezaro, J. Baumeister, A. Leitao, “Modified iterated Tikhonov methods for solving systems of nonlinear ill-posed equations”, Inverse Probl. Imaging, 5 (2010), 1–17 | DOI | MR
[7] Ng. Buong, “Regularization for unconstrained vector optimization of convex functionals in Banach spaces”, Comput. Math. Math. Phys., 46 (2006), 354–360 | DOI | MR | Zbl
[8] Ng. Buong, Ng. D. Dung, “Regularization for a common solution of a system of nonlinear ill-posed equations”, Int. J. Math. Anal., 34 (2009), 1693–1699 | MR
[9] M. M. Vainberg, Variational Method and Method of Monotone Operators in the Theory of Nonlinear Equations, Nauka, M., 1972 (in Russian) | MR | Zbl
[10] Ya. I. Alber, I. P. Ryazantseva, Nonlinear Ill-Posed Problems of Monotone Types, Springer, Berlin, 2006 | MR
[11] Ng. Buong, “On nonlinear ill-posed accretive equations”, Southeast Asian Bull. Math., 28 (2004), 1–6 | MR
[12] Ng. Buong, Ng. Th. H. Phuong, “Regularization method for a class of variational inequalities in Banach spaces”, Comput. Math. Math. Phys., 52 (2012), 1487–1496 | DOI
[13] Ng. Buong, Ng. Th. H. Phuong, “Regularization methods for nonlinear ill-posed equations involving $m$-accretive mappings in Banach spaces”, Russ. Math., 57 (2013), 58–64 | DOI | Zbl
[14] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Pergamon, Oxford, 1982 ; Nauka, M., 1997 | MR | Zbl