@article{ZVMMF_2014_54_3_a12,
author = {Hui-Ling Zhen and Bo Tian and Min Li and Yan Jiang and Ming Wang},
title = {Dynamics of the generalized $(3+1)$-dimensional nonlinear {Schr\"odinger} equation in cosmic plasmas},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {503},
year = {2014},
volume = {54},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a12/}
}
TY - JOUR AU - Hui-Ling Zhen AU - Bo Tian AU - Min Li AU - Yan Jiang AU - Ming Wang TI - Dynamics of the generalized $(3+1)$-dimensional nonlinear Schrödinger equation in cosmic plasmas JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 503 VL - 54 IS - 3 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a12/ LA - en ID - ZVMMF_2014_54_3_a12 ER -
%0 Journal Article %A Hui-Ling Zhen %A Bo Tian %A Min Li %A Yan Jiang %A Ming Wang %T Dynamics of the generalized $(3+1)$-dimensional nonlinear Schrödinger equation in cosmic plasmas %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 503 %V 54 %N 3 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a12/ %G en %F ZVMMF_2014_54_3_a12
Hui-Ling Zhen; Bo Tian; Min Li; Yan Jiang; Ming Wang. Dynamics of the generalized $(3+1)$-dimensional nonlinear Schrödinger equation in cosmic plasmas. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a12/
[1] N. J. Zabusky, M. D. Kruskal, Phys. Rev. Lett., 15 (1965), 240 | DOI | Zbl
[2] M. J. Ablowitz, P. A. Clarkson, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ., New York, 1991 | MR | Zbl
[3] C. Q. Dai, Y. Y. Wang, J. F. Zhang, Opt. Lett., 35 (2010), 1437 | DOI
[4] N. J. Zabusky, M. D. Kruskal, Phys. Rev. Lett., 15 (1965), 240 | DOI | Zbl
[5] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Phys. Rev. Lett., 19 (1967), 1095 | DOI
[6] A. Hasegawa, F. Tappert, Appl. Phys. Lett., 23 (1973), 142 | DOI
[7] N. N. Akhmediev, A. B. Shabat, Solitons: Nonlinear Pulses and Wavepackets, Chapman and Hall, London, 1997
[8] R. Sabry, W. M. Moslem, E. F. Ei-Shamy, P. K. Shukla, Phys. Plasmas, 18 (2011), 2302 | DOI
[9] B. Tian, Y. T. Gao, H. W. Zhu, Phys. Lett. A, 366 (2007), 223 | DOI | Zbl
[10] B. Tian, Y. T. Gao, Phys. Plasmas, 12 (2005), 054701 | DOI | MR
[11] Y. T. Gao, B. Tian, Phys. Plasmas, 13 (2006), 112901 | DOI
[12] R. Hirota, J. Math. Phys., 14 (1973), 805 | DOI | MR | Zbl
[13] A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Springer-Verlag, Berlin, 1991
[14] J. J. Nimmo, N. C. Freeman, J. Phys. A, 17 (1984), 1415 | DOI | MR | Zbl
[15] F. Lambert, J. Springael, Chaos, Solitons Fractals, 12 (2001), 2821 | DOI | MR | Zbl
[16] Y. C. Hon, E. G. Fan, IMA J. Appl. Math., 77 (2011), 236 | DOI | MR
[17] Y. B. Deng, C. H. Wang, X. Q. Fu, L. F. Zhang, Opt. Commun., 284 (2011), 1364 | DOI
[18] N. Z. Petrovió, M. Belia, W. P. Zhong, R. H. Xie, G. Chen, Opt. Lett., 34 (2009), 1609 | DOI
[19] Z. Y. Ma, S. H. Ma, Chin. Phys. B, 21 (2012), 3
[20] M. Belic, N. Petrovic, W. P. Zhong, R. H. Xie, G. Chen, Phys. Rev. Lett., 101 (2008), 123904 | DOI
[21] X. Lü, H. W. Zhu, X. H. Meng, Z. C. Yang, B. Tian, J. Math. Anal. Appl., 336 (2007), 1305 | DOI | MR | Zbl
[22] F. Lambert, J. Springael, Chaos Solitons Fractals, 12 (2001), 2821 | DOI | MR | Zbl
[23] H. Q. Zhang, B. Tian, X. H. Meng, X. Lu, W. J. Liu, Eur. Phys. J. B, 72 (2009), 233 | DOI | MR | Zbl