Dynamics of the generalized $(3+1)$-dimensional nonlinear Schrödinger equation in cosmic plasmas
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Under investigation in this paper is a generalized $(3+1)$-dimensional nonlinear Schrödinger equation with the variable coefficients, which governs the nonlinear dynamics of the ion-acoustic envelope solitons in the magnetized electron-positron-ion plasma with two-electron temperatures in space or astrophysics. Bilinear forms and Bäcklund transformations are derived through the Bell polynomials. $N$-soliton solutions are constructed in the form of the double Wronskian determinant and the $N$-th order polynomials in $N$ exponentials. Shape and motion of one soliton have been graphically analyzed, as well as the interactions of two and three solitons. When $\beta(t)$ and $\gamma(t)$ are both the periodic functions of the reduced time $t$, where $\gamma(t)$ is the loss (gain) coefficient, and $\beta(t)$ means the combined effects of the transverse perturbation and magnetic field, the shape and motion of one soliton as well as the interactions of two or three solitons will occur periodically. All the interactions can be elastic with certain coefficients.
@article{ZVMMF_2014_54_3_a12,
     author = {Hui-Ling Zhen and Bo Tian and Min Li and Yan Jiang and Ming Wang},
     title = {Dynamics of the generalized $(3+1)$-dimensional nonlinear {Schr\"odinger} equation in cosmic plasmas},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {503},
     year = {2014},
     volume = {54},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a12/}
}
TY  - JOUR
AU  - Hui-Ling Zhen
AU  - Bo Tian
AU  - Min Li
AU  - Yan Jiang
AU  - Ming Wang
TI  - Dynamics of the generalized $(3+1)$-dimensional nonlinear Schrödinger equation in cosmic plasmas
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 503
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a12/
LA  - en
ID  - ZVMMF_2014_54_3_a12
ER  - 
%0 Journal Article
%A Hui-Ling Zhen
%A Bo Tian
%A Min Li
%A Yan Jiang
%A Ming Wang
%T Dynamics of the generalized $(3+1)$-dimensional nonlinear Schrödinger equation in cosmic plasmas
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 503
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a12/
%G en
%F ZVMMF_2014_54_3_a12
Hui-Ling Zhen; Bo Tian; Min Li; Yan Jiang; Ming Wang. Dynamics of the generalized $(3+1)$-dimensional nonlinear Schrödinger equation in cosmic plasmas. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a12/

[1] N. J. Zabusky, M. D. Kruskal, Phys. Rev. Lett., 15 (1965), 240 | DOI | Zbl

[2] M. J. Ablowitz, P. A. Clarkson, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ., New York, 1991 | MR | Zbl

[3] C. Q. Dai, Y. Y. Wang, J. F. Zhang, Opt. Lett., 35 (2010), 1437 | DOI

[4] N. J. Zabusky, M. D. Kruskal, Phys. Rev. Lett., 15 (1965), 240 | DOI | Zbl

[5] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Phys. Rev. Lett., 19 (1967), 1095 | DOI

[6] A. Hasegawa, F. Tappert, Appl. Phys. Lett., 23 (1973), 142 | DOI

[7] N. N. Akhmediev, A. B. Shabat, Solitons: Nonlinear Pulses and Wavepackets, Chapman and Hall, London, 1997

[8] R. Sabry, W. M. Moslem, E. F. Ei-Shamy, P. K. Shukla, Phys. Plasmas, 18 (2011), 2302 | DOI

[9] B. Tian, Y. T. Gao, H. W. Zhu, Phys. Lett. A, 366 (2007), 223 | DOI | Zbl

[10] B. Tian, Y. T. Gao, Phys. Plasmas, 12 (2005), 054701 | DOI | MR

[11] Y. T. Gao, B. Tian, Phys. Plasmas, 13 (2006), 112901 | DOI

[12] R. Hirota, J. Math. Phys., 14 (1973), 805 | DOI | MR | Zbl

[13] A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Springer-Verlag, Berlin, 1991

[14] J. J. Nimmo, N. C. Freeman, J. Phys. A, 17 (1984), 1415 | DOI | MR | Zbl

[15] F. Lambert, J. Springael, Chaos, Solitons Fractals, 12 (2001), 2821 | DOI | MR | Zbl

[16] Y. C. Hon, E. G. Fan, IMA J. Appl. Math., 77 (2011), 236 | DOI | MR

[17] Y. B. Deng, C. H. Wang, X. Q. Fu, L. F. Zhang, Opt. Commun., 284 (2011), 1364 | DOI

[18] N. Z. Petrovió, M. Belia, W. P. Zhong, R. H. Xie, G. Chen, Opt. Lett., 34 (2009), 1609 | DOI

[19] Z. Y. Ma, S. H. Ma, Chin. Phys. B, 21 (2012), 3

[20] M. Belic, N. Petrovic, W. P. Zhong, R. H. Xie, G. Chen, Phys. Rev. Lett., 101 (2008), 123904 | DOI

[21] X. Lü, H. W. Zhu, X. H. Meng, Z. C. Yang, B. Tian, J. Math. Anal. Appl., 336 (2007), 1305 | DOI | MR | Zbl

[22] F. Lambert, J. Springael, Chaos Solitons Fractals, 12 (2001), 2821 | DOI | MR | Zbl

[23] H. Q. Zhang, B. Tian, X. H. Meng, X. Lu, W. J. Liu, Eur. Phys. J. B, 72 (2009), 233 | DOI | MR | Zbl