Features of behavior of numerical methods for solving Volterra integral equations of the second kind
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 496-502
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Systems of second-kind Volterra integral equations with stiff and oscillating components are considered. An implicit noniterative method of the second order is proposed for the numerical solution of such problems. The efficiency of the method is demonstrated using several examples.
@article{ZVMMF_2014_54_3_a11,
     author = {M. V. Bulatov and M. N. Machkhina},
     title = {Features of behavior of numerical methods for solving {Volterra} integral equations of the second kind},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {496--502},
     year = {2014},
     volume = {54},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a11/}
}
TY  - JOUR
AU  - M. V. Bulatov
AU  - M. N. Machkhina
TI  - Features of behavior of numerical methods for solving Volterra integral equations of the second kind
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 496
EP  - 502
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a11/
LA  - ru
ID  - ZVMMF_2014_54_3_a11
ER  - 
%0 Journal Article
%A M. V. Bulatov
%A M. N. Machkhina
%T Features of behavior of numerical methods for solving Volterra integral equations of the second kind
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 496-502
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a11/
%G ru
%F ZVMMF_2014_54_3_a11
M. V. Bulatov; M. N. Machkhina. Features of behavior of numerical methods for solving Volterra integral equations of the second kind. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 496-502. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a11/

[1] Krasnov M. L., Integralnye uravneniya, Nauka, M., 1975 | MR | Zbl

[2] Verlan A. F., Sizikov B. C., Integralnye uravneniya: metody, algoritmy, programmy, Nauk. dumka, Kiev, 1986 | MR

[3] Linz P., Analytical and numerical methods for Volterra equations, Studies in applied mathematics, Philadelphia, 1985 | MR

[4] Brunner H., van der Houwen P. J., The numerical solution of Volterra equations, CWI Monographs, 3, North-Holland, Amsterdam, 1986 | MR | Zbl

[5] Brunner H., Collocation methods for Volterra integral and related functional equations, Cambridge Univ. Press, New York, 2004 | MR | Zbl

[6] Kershaw D., Volterra equations of the second kind, Delves and Walsh, 1974, 140–161 | MR

[7] Bulatov M. V., “O postroenii neklassicheskikh raznostnykh skhem dlya obyknovennykh differentsialnykh uravnenii”, Differents. ur-niya, 44:4 (2008), 546–557 | MR

[8] Bulatov M. V., Tygliyan A. V., Filippov S. S., “Ob odnom klasse odnoshagovykh odnostadiinykh metodov dlya zhestkikh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 51:7 (2011), 1251–1265 | MR | Zbl

[9] Dekker K., Verver Ya., Ustoichivost metodov Runge–Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR

[10] Rakitskii Yu. V., Ustinov S. M., Chernorutskii N. G., Chislennye metody resheniya zhestkikh sistem, Nauka, M., 1979 | MR