Structure and properties of four-kink multisolitons of the sine-Gordon equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 481-495 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dynamics of nonlinear waves of the sine-Gordon equation with a spatially modulated periodic potential are studied using analytical and numerical methods. The structure and properties of four-kink multisolitons excited on two identical attracting impurities are determined. For small-amplitude oscillations, an analytical spectrum of the oscillations is obtained, which is in qualitatively agreement with the numerical results.
@article{ZVMMF_2014_54_3_a10,
     author = {A. M. Gumerov and E. G. Ekomasov and F. K. Zakir'yanov and R. V. Kudryavtsev},
     title = {Structure and properties of four-kink multisolitons of the {sine-Gordon} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {481--495},
     year = {2014},
     volume = {54},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a10/}
}
TY  - JOUR
AU  - A. M. Gumerov
AU  - E. G. Ekomasov
AU  - F. K. Zakir'yanov
AU  - R. V. Kudryavtsev
TI  - Structure and properties of four-kink multisolitons of the sine-Gordon equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 481
EP  - 495
VL  - 54
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a10/
LA  - ru
ID  - ZVMMF_2014_54_3_a10
ER  - 
%0 Journal Article
%A A. M. Gumerov
%A E. G. Ekomasov
%A F. K. Zakir'yanov
%A R. V. Kudryavtsev
%T Structure and properties of four-kink multisolitons of the sine-Gordon equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 481-495
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a10/
%G ru
%F ZVMMF_2014_54_3_a10
A. M. Gumerov; E. G. Ekomasov; F. K. Zakir'yanov; R. V. Kudryavtsev. Structure and properties of four-kink multisolitons of the sine-Gordon equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 481-495. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a10/

[1] Bykov V. G., Nelineinye volnovye protsessy v geologicheskikh sredakh, Dalnauka, Vladivostok, 2000

[2] Yakushevich L. V., Nelineinaya fizika DNK, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2007

[3] Braun O. M., Kivshar Yu. S., Model Frenkelya–Kontorovoi. Kontseptsii, metody, prilozheniya, Fizmatlit, M., 2008

[4] Shamsutdinov M. A., Nazarov V. N., Lomakina I. Yu. i dr., Ferro- i antiferromagnitodinamika. Nelineinye kolebaniya, volny i solitony, Nauka, M., 2009

[5] Alfimov G. L., “Nelokalnoe uravnenie sinus-Gordona: resheniya tipa “kink” v predele slaboi nelokalnosti”, Nelineinaya dinamika, 5:4 (2009), 585–602 | MR

[6] Garifullin R. N., Kalyakin L. A., Shamsutdinov M. A., “Avtorezonansnoe vozbuzhdenie brizera v slabykh ferromagnetikakh”, Zh. vychisl. matem. i matem. fiz., 47:7 (2007), 208–1220 | MR

[7] Kosevich A. M., Kovalev A. S., Vvedenie v nelineinuyu fizicheskuyu mekhaniku, Naukova dumka, Kiev, 1989 | MR | Zbl

[8] Quintero N. R., Sanchez A., Merten F. G., “Existence of internal modes of sine-Gordon kinks”, Phys. Rev. E, 62:1 (2000), R60–R63 | DOI | MR

[9] Fogel M. V., Trullinger S. E., Bishop A. R., Krumhandl J. A., “Dynamics of sine-Gordon solitons in the presence of perturbations”, Phys. Rev. TB, 15 (1977), 1578–1592 | DOI | MR

[10] Knight C. J. K., Derks G., Doelman A., Susanto H., “Stability of stationary fronts in a nonlinear wave equation with spatial inhomogeneity”, J. Different. Equat., 254:2 (2013), 408–468 | DOI | MR | Zbl

[11] Currie J. P., Trullinger S. E., Bishop A. R., Krumhandl J. A., “Numerical simulation of sine-Gordon soliton dynamics in the presence of perturbations”, Phys. Rev. B, 15:12 (1977), 5567–5580 | DOI

[12] Makhankov V. G., “Solitony i chislennyi eksperiment”, Fizika elementarnykh chastits i atomnogo yadra, 14:1 (1983), 123–180 | MR

[13] Zhang F., Kivshar Y. S., Vazquez L., “Resonant kink-impurity interactions in the sine-Gordon model”, Phys. Rev. A, 45 (1992), 6019–6030 | DOI

[14] Piette V., Zakrzewski W. J., “Scattering of sine-Gordon breathers on a potential well”, Phys. Rev. E, 79 (2009), 046603 | DOI | MR

[15] Fogel M. V., Trullinger S. E., Bishop A. R., Krumhansl J. A., “Classical Particlelike Behavior of Sine-Gordon Solitons in Scattering Potentials and Applied Fields”, Phys. Rev. Lett., 36 (1976), 1411–1414 | DOI | MR

[16] González J. A., Bellorin A., Guerrero L. E., “Internal modes of sine-Gordon solitons in the presence of spatiotemporal perturbations”, Phys. Rev. E (Rapid Commun.), 65 (2002), 065601 | DOI | MR

[17] Kivshar Y. S., Zhang F., Vazquez L., “Resonant soliton-impurity interactions”, Phys. Rev. Lett., 67 (1991), 1177–1180 | DOI

[18] Yakushevich L. V., Kashapova G. R., Zakiryanov F. K., “Vliyanie periodicheskogo polya s postoyannoi i medlenno menyayuscheisya chastotoi na dvizhenie kinka v DNK”, Biofizika, 57:1 (2012), 21–26 | MR

[19] Paul D. I., “Soliton theory and the dynamics of a ferromagnetic domain wall”, J. Phys. C: Solid State Phys., 12 (1979), 585–593 | DOI

[20] Javidan K., “Analytical formulation for soliton-potential dynamics”, Phys. Rev. E, 78 (2008), 046607 | DOI

[21] Belova T. I., Kudryavtsev A. E., “Solitony i ikh vzaimodeistviya v klassicheskoi teorii polya”, Uspekhi fiz. nauk, 167:4 (1997), 377–406 | DOI

[22] Piette V., Zakrzewski W. J., “Scattering of sine-Gordon kinks on potential wells”, J. Phys. A: Math. and Theor., 40 (2007), 5995–6010 | DOI | MR | Zbl

[23] Ekomasov E. G., Azamatov Sh. A., Murtazin R. R., “Izuchenie zarozhdeniya i evolyutsii magnitnykh neodnorodnostei tipa solitonov i brizerov v magnetikakh s lokalnymi neodnorodnostyami anizotropii”, Fiz. metallov i metallovedenie, 105:4 (2008), 341–349

[24] Malomed V. A., Nepomnyashchy A. A., “Interaction of two fluxons near a local inhomogeneity in a long Josephson junction”, Phys. Rev. B, 45:21 (1992), 12435–12441 | DOI

[25] Goodman R. H., Haberman R., “Interaction of sine-Gordon kinks with defects: The two-bounce resonance”, Physica D: Nonlinear Phenomena, 195:3 (2004), 303–323 | DOI | MR | Zbl

[26] Bratsos A. G., “The solution of the two-dimensional sine-Gordon equation using the method of lines”, J. Comput. Appl. Math., 206:1 (2007), 251–277 | DOI | MR | Zbl

[27] Gornostyrev Y. N., Katsnelson M. I., Stroev A. Y., Trgfilov A. V., “Impurity-kink interaction in the two-dimensional Frenkel–Kontorova model”, Phys. Rev. B, 71 (2005), 094105 | DOI

[28] Ekomasov E. G., Azamatov Sh. A., Murtazin R. R., “Vozbuzhdenie nelineinykh uedinennykh izgibnykh voln v dvizhuscheisya domennoi granitse”, Fiz. metallov i metallovedenie, 108:6 (2009), 1–6

[29] Kalberman G., “The sine-Gordon wobble”, J. Phys. A: Math. Gen., 37 (2004), 11603–11612 | DOI | MR | Zbl

[30] Gulevich D. R., Kusmartsev F. V., “Perturbation theory for localized solutions of the sine-Gordon equation: Decay of a breather and pinning by a microresistor”, Phys. Rev. B, 74 (2006), 214303 | DOI

[31] Kryuchkov S. B., Kaplya E. V., “Solitonnaya liniya zaderzhki na osnove poluprovodnikovoi sverkhreshetki”, Zh. tekhn. fiz., 73 (2003), 53–56

[32] González J. A., Cuenda S., Sánchez A., “Kink dynamics in spatially inhomogeneous media: The role of internal modes”, Phys. Rev. E, 75 (2007), 036611 | DOI | MR

[33] Ekomasov E. G., Murtazin R. R., Bogomazova O. V., Gumerov A. M., “One-dimensional dynamics of domain walls in two-layer ferromagnet structure with different parameters of magnetic anisotropy and exchange”, J. Magn. Magn. Mater., 339 (2013), 133 | DOI

[34] Ekomasov E. G., Murtazin R. R., Bogomazova O. B., “Dinamika kinkov modifitsirovannogo uravneniya sinus-Gordona pri nalichii stupenchatoi prostranstvennoi modulyatsii periodicheskogo potentsiala”, Nelineinyi mir, 11:1 (2013), 51–57

[35] Ekomasov E. G., Shabalin M. A., “Simulation the nonlinear dynamics of domain walls in weak ferromagnets”, The Physics of Metals and Metallography, 101 (2006), S48–S50 | DOI

[36] Kälbermann G., “A model for soliton trapping in a well”, Chaos, Solitons and Fractals, 12:13 (2001), 2381–2385 | DOI

[37] Ekomasov E. G., Gumerov A. M., Rakhmatullin I. I., “Chislennoe modelirovanie pinninga i nelineinoi dinamiki domennykh granits v ferromagnetikakh s defektami”, Bectn. Bashkirskogo universiteta, 15:3 (2010), 564–566

[38] Ekomasov E. G., Gumerov A. M., Murtazin R. R., “O vozbuzhdenii solitonov pri vzaimodeistvii kinkov uravneniya sinus-Gordona s prityagivayuschei primesyu”, Kompyuternye issledovaniya i modelirovanie, 4:3 (2012), 509–520

[39] Gumerov A. M., Ekomasov E. G., Murtazin R. R., “Modelirovanie dinamiki domennykh granits v slabykh ferromagnetikakh”, Khroniki ob'edinennogo fonda elektronnykh resursov. Nauka i obrazovanie, 2010, no. 5

[40] Perring J. K., Skyrme T. N. R., “A model unified field equation”, Nuclear Physics, 31 (1962), 550–555 | DOI | MR | Zbl

[41] Gumerov A. M., Ekomasov E. G., “Issledovanie vliyaniya tochechnykh defektov na nelineinuyu dinamiku magnitnykh neodnorodnostei”, Pisma o materialakh, 3:2 (2013), 103–105 | MR

[42] Rabinovich M. I., Trubetskov D. I., Vvedenie v teoriyu kolebanii i voln, NITs. Regulyarnaya i khaoticheskaya dinamika, M., 2000

[43] Ekomasov E. G., Gumerov A. M., Murtazin R. R., “Nonlinear dynamics of the magnetic inho-mogenities in magnetic with modulation of the magnetic parameters”, International-Conference Nonlinear Equat. and Complex Analys (Bannoe Lake, Russia, 2013), 24

[44] Landa P. S., Nelineinye kolebaniya i volny, Librokom, M., 2010