@article{ZVMMF_2014_54_3_a0,
author = {Yu. O. Vorontsov and Kh. D. Ikramov},
title = {Numerical solution of the matrix equation $X-A\overline{X}B=C$ in the self-adjoint case},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {371--374},
year = {2014},
volume = {54},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a0/}
}
TY - JOUR
AU - Yu. O. Vorontsov
AU - Kh. D. Ikramov
TI - Numerical solution of the matrix equation $X-A\overline{X}B=C$ in the self-adjoint case
JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY - 2014
SP - 371
EP - 374
VL - 54
IS - 3
UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a0/
LA - ru
ID - ZVMMF_2014_54_3_a0
ER -
%0 Journal Article
%A Yu. O. Vorontsov
%A Kh. D. Ikramov
%T Numerical solution of the matrix equation $X-A\overline{X}B=C$ in the self-adjoint case
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 371-374
%V 54
%N 3
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a0/
%G ru
%F ZVMMF_2014_54_3_a0
Yu. O. Vorontsov; Kh. D. Ikramov. Numerical solution of the matrix equation $X-A\overline{X}B=C$ in the self-adjoint case. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 3, pp. 371-374. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_3_a0/
[1] Ikramov Kh. D., Vorontsov Yu. O., “Matrichnoe uravnenie $X+AX^TB=C$: usloviya odnoznachnoi razreshimosti i algoritm chislennogo resheniya”, Dokl. AN, 443:5 (2012), 545–548 | MR | Zbl
[2] Vorontsov Yu. O., Ikramov Kh. D., “Chislennoe reshenie matrichnykh uravnenii vida $X+AX^TB=C$”, Zh. vychisl. matem. i matem. fiz., 53:3 (2013), 331–335 | DOI | Zbl
[3] Vorontsov Yu. O., “Modifikatsiya chislennogo algoritma dlya resheniya matrichnogo uravneniya $X+AX^TB=C$”, Zh. vychisl. matem. i matem. fiz., 53:6 (2013), 853–856 | DOI
[4] Zhou V., Lam J., Duan C.-R., “Toward solution of matrix equation $X=Af(X)B+C$”, Linear Algebra Appl., 435:11 (2011), 1370–1398 | DOI | MR | Zbl
[5] Ikramov Kh. D., Vorontsov Yu. O., “Chislennoe reshenie matrichnykh uravnenii Silvestra v samosopryazhennom sluchae”, Vestn. MGU, 2014, no. 2 | MR
[6] Vorontsov Yu. O., Ikramov Kh. D., “Chislennoe reshenie matrichnykh uravnenii tipa Steina v samosopryazhennom sluchae”, Zh. vychisl. matem. i matem. fiz., 54:2 (2014) | MR
[7] Ikramov Kh. D., “Usloviya samosopryazhennosti matrichnykh uravnenii tipa Steina”, Dokl. AN, 451:5 (2013), 498–500 | DOI | MR | Zbl
[8] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR