Layerwise sensing in $X$-ray tomography in the polychromatic case
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2, pp. 318-335 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An $X$-ray tomography problem that is an inverse problem for the transport differential equation is studied. The absorption and single scattering of particles are taken into account. The suggested statement of the problem corresponds to stepwise and layerwise sensing of an unknown medium with initial data specified as the integrals of the outgoing flux density with respect to energy. The sought object is a set on which the coefficients of the equations suffer a discontinuity, which corresponds to searching for the boundaries between the different substances composing the sensed medium. A uniqueness theorem is proven under rather general assumptions and a condition guaranteeing the existence of the sought lines. The proof is constructive and can be used for developing a numerical algorithm.
@article{ZVMMF_2014_54_2_a9,
     author = {E. Yu. Balakina},
     title = {Layerwise sensing in $X$-ray tomography in the polychromatic case},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {318--335},
     year = {2014},
     volume = {54},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a9/}
}
TY  - JOUR
AU  - E. Yu. Balakina
TI  - Layerwise sensing in $X$-ray tomography in the polychromatic case
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 318
EP  - 335
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a9/
LA  - ru
ID  - ZVMMF_2014_54_2_a9
ER  - 
%0 Journal Article
%A E. Yu. Balakina
%T Layerwise sensing in $X$-ray tomography in the polychromatic case
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 318-335
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a9/
%G ru
%F ZVMMF_2014_54_2_a9
E. Yu. Balakina. Layerwise sensing in $X$-ray tomography in the polychromatic case. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2, pp. 318-335. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a9/

[1] Anikonov D. S., Balakina E. Yu., “Polikhromaticheskii indikator neodnorodnosti neizvestnoi sredy dlya zadachi rentgenovskoi tomografii”, Sib. matem. zhurnal, 53:4 (2012), 721–740 | MR | Zbl

[2] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[3] Anikonov D. S., Nasarov V. G., Prokhorov I. V., Poorly visible media in X-ray tomography, Boston, 2002

[4] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[5] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, 1961, 3–158

[6] Keiz K., Tsvaifel P., Lineinaya teoriya perenosa, Mir, M., 1972

[7] Levin G. G., Starostenko O. V., “O vozmozhnosti tomograficheskikh issledovanii rasseivayuschikh sred”, Lineinye i nelineinye zadachi vychislitelnoi tomografii, Novosibirsk, 1985, 86–99

[8] Pikalov V. V., Preobrazhenskii N. G., “Vychislitelnaya tomografiya i fizicheskii eksperiment”, Uspekhi fiz. nauk, 141:3 (1983), 469–498 | DOI

[9] Romanov V. G., “Zadacha o sovmestnom opredelenii koeffitsienta oslableniya i indikatrisy rasseyaniya”, Dokl. AN, 351:1 (1996), 29–31 | MR | Zbl

[10] Sultangazin U. N., Irkegulov I. Sh., “O nekotorykh obratnykh zadachakh atmosfernoi optiki”, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, Novosibirsk, 1984

[11] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[12] Tikhonov A. N., Arsenin V. Ya., Timonov A. A., Matematicheskie zadachi kompyuternoi tomografii, Nauka, M., 1987 | MR

[13] Sharafutdinov V. A., “Obratnaya zadacha opredeleniya istochnika v statsionarnom uravnenii perenosa”, Dokl. AN, 347:5 (1996), 604–606 | MR | Zbl

[14] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[15] Marchuk G. I., “O postanovke nekotorykh obratnykh zadach”, Dokl. AN, 156:3 (1964), 503–506 | Zbl

[16] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl