@article{ZVMMF_2014_54_2_a8,
author = {V. Yu. Glotov and V. M. Goloviznin and S. A. Karabasov and A. P. Markeshteijn},
title = {New two-level leapfrog scheme for modeling the stochastic {Landau{\textendash}Lifshitz} equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {298--317},
year = {2014},
volume = {54},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a8/}
}
TY - JOUR AU - V. Yu. Glotov AU - V. M. Goloviznin AU - S. A. Karabasov AU - A. P. Markeshteijn TI - New two-level leapfrog scheme for modeling the stochastic Landau–Lifshitz equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 298 EP - 317 VL - 54 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a8/ LA - ru ID - ZVMMF_2014_54_2_a8 ER -
%0 Journal Article %A V. Yu. Glotov %A V. M. Goloviznin %A S. A. Karabasov %A A. P. Markeshteijn %T New two-level leapfrog scheme for modeling the stochastic Landau–Lifshitz equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 298-317 %V 54 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a8/ %G ru %F ZVMMF_2014_54_2_a8
V. Yu. Glotov; V. M. Goloviznin; S. A. Karabasov; A. P. Markeshteijn. New two-level leapfrog scheme for modeling the stochastic Landau–Lifshitz equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2, pp. 298-317. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a8/
[1] Lifshits E. M., Pitaevskii L. P., Statisticheskaya fizika, v. 2, Teoriya kondensirovannogo sostoyaniya, Nauka, M., 1978 | MR
[2] Landau L. D., Lifshits E. M., Statisticheskaya fizika, v. 1, Fizmatlit, M., 2005
[3] Bell J. B., Garcia A. I., Williams S. A., “Numerical methods for the stochastic Landau–Lifshitz Navier–Stokes equations”, Phys. Rev. E, 76:1 (2007), 016708 | DOI | MR
[4] Bell J. B., Garcia A. L., Williams S. A., “Computational fluctuating fluid dynamics”, ESAIM: Math. Modeling and Numer. Anal., 44 (2010), 1085–1105 | DOI | MR | Zbl
[5] Donev A. et al., “On the accuracy of finite-volume schemes for fluctuating hydrodynamics”, Comm. Appl. Math. and Comp. Sci., 5:2 (2010), 149–197 | DOI | MR | Zbl
[6] Voulgarakis N. K., Chu J.-W., “Bridging fluctuating hydrodynamics and molecular dynamics simulations of fluids”, J. Chemical Physics, 130 (2009), 134111 | DOI
[7] Pandey A., Klar A., Tiwari S., “Mecshfree method for fluctuating hydrodynamics”, Math. and Comp. in Simulation, 2012, 2157–2166 | DOI | MR | Zbl
[8] Fabritiis G. D. et al., “Fluctuating hydrodynamic modeling of fluids at the nanoscale”, Phys. Rev. E, 75 (2007), 026307 | DOI
[9] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, Uchebnoe posobie. V 10 t., v. VI, Gidrodinamika, Nauka, M., 1986 | MR
[10] Hirsch C., Numerical computation of internal and external flows, v. 1, Fundaments of numerical discretezation, Antony Rowe Ltd., Eastbourne, 2001 | Zbl
[11] Goloviznin V. M., Karabasov S. A., Kobrinskii I. M., “Balansno-kharakteristicheskie skhemy s razdelennymi konservativnymi i potokovymi peremennymi”, Matem. modelirovanie, 15:9 (2003), 29–48 | MR | Zbl
[12] Godunov S. K., “Raznostnyi metod chislennogo resheniya razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47:89 (1959), 271–306 | MR | Zbl
[13] Pirozzoli S., “On spectral properties of shocj-capturing schemes”, J. Comput. Phys., 219 (2006), 489–497 | DOI | Zbl
[14] Fauconnier D., Dick F., “On the spectral and conservation properties of nonlinear discretezation operators”, J. comput. phys., 230 (2011), 4488–4518 | DOI | MR | Zbl
[15] Ferrari P. A., Fontes L. R. G., “Shock fluctuations in the abymetric simple exchusion process”, Probab. Theory Relat. Fields, 99:205 (1994) | MR | Zbl