Terminal control of boundary models
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2, pp. 257-285 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A terminal optimal control problem for finite-dimensional static boundary models is formulated. The finite-dimensional models determine the initial and terminal states of the plant. The choice of an optimal control drives the plant from one state to another. A saddle-point method is proposed for solving this problem. The convergence of the method in a Hilbert space is proved.
@article{ZVMMF_2014_54_2_a6,
     author = {A. S. Antipin},
     title = {Terminal control of boundary models},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {257--285},
     year = {2014},
     volume = {54},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a6/}
}
TY  - JOUR
AU  - A. S. Antipin
TI  - Terminal control of boundary models
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 257
EP  - 285
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a6/
LA  - ru
ID  - ZVMMF_2014_54_2_a6
ER  - 
%0 Journal Article
%A A. S. Antipin
%T Terminal control of boundary models
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 257-285
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a6/
%G ru
%F ZVMMF_2014_54_2_a6
A. S. Antipin. Terminal control of boundary models. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2, pp. 257-285. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a6/

[1] Antipin A. S., “Ravnovesnoe programmirovanie: metody gradientnogo tipa”, Avtomat. i telemekhan., 1997, no. 8, 125–137 | MR | Zbl

[2] Antipin A. S., “Upravlyaemye proksimalnye differentsialnye sistemy dlya resheniya sedlovykh zadach”, Differents. ur-niya, 28:11 (1992), 1846–1861 | MR | Zbl

[3] Antipin A. S., “Extra-proximal methods for solving two-person nonzerosum games”, Math. Program. Ser. B, 120 (2009), 147–177 | DOI | MR | Zbl

[4] Antipin A. S., “Multicriteria equilibrium programming problems and methods for their solutions”, Optimizat., 58:7 (2009), 729–753 | DOI | MR | Zbl

[5] Antipin A. S., “Ravnovesnoe programmirovanie: modeli i metody resheniya”, Izv. Irkutskogo gos. un-ta. Ser. matem., 2:1 (2009), 8–36 http://isu.ru/izvestia

[6] Antipin A. S., “Metody resheniya variatsionnykh neravenstv so svyazannymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1291–1307 | MR | Zbl

[7] Aubin J.-P., Frankowska H., Set valued analysis, Birkhauser, Boston, 1990 | MR | Zbl

[8] Vasilev F. P., Metody optimizatsii, v 2 kn., MTsNMO, M., 2011

[9] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Fizmatlit, M., 2009

[10] Antipin A. S., “O skhodimosti i otsenkakh skorosti skhodimosti proksimalnykh metodov k nepodvizhnym tochkam ekstremalnykh otobrazhenii”, Zh. vychisl. matem. i matem. fiz., 35:5 (1995), 688–704 | MR | Zbl

[11] Antipin A. S., Gradientnyi i ekstragradientnyi podkhody v bilineinom ravnovesnom programmirovanii, VTs RAN, M., 2002 | MR

[12] Antipin A., “Two-person game with Nash equilibrium in optimal control problems”, Optimizat. Let., 6:7 (2012), 1349–1378 | DOI | MR | Zbl

[13] Antipin A., “Gradient approach of computing fixed points of equilibrium problems”, J. Global Optimizat., 24:3 (2002), 285–309 | DOI | MR | Zbl

[14] Nash J. F., Jr., “Equilibrium points in $n$-person games”, Proc. Nat. Acad. Sci. USA, 36 (1950), 48–49 | DOI | MR | Zbl

[15] Nikaido H., Isoda K., “Note on noncooperative convex game”, Pacific J. Math., 1955, suppl., 807–815 | DOI | MR

[16] Antipin A. S., Khoroshilova E. V., “Lineinoe programmirovanie i dinamika”, Tr. In-ta matem. i mekhan. UrO RAN, 19, no. 2, 2013, 7–25

[17] Vasilev F. P., Khoroshilova E. V., Antipin A. S., “Regulyarizovannyi ekstragradientnyi metod poiska sedlovoi tochki v zadachakh optimalnogo upravleniya”, Tr. In-ta matem. i mekhan. UrO RAN, 17, no. 1, 2011, 27–37

[18] Atipin A. S., “Metod modifitsirovannoi funktsii Lagranzha dlya zadach optimalnogo upravleniya so svobodnym pravym kontsom”, Izv. Irkutskogo gos. un-ta. Ser. matem., 4:2 (2011), 27–44

[19] Nikolskii M. S., “O skhodimosti metoda proektsii gradienta v zadachakh optimalnogo upravleniya”, Nelineinaya dinamika i upravlenie, 3, Fizmatlit, M., 2003

[20] Srochko V. A., Aksenyushkina E. V., “Lineino-kvadratichnaya zadacha optimalnogo upravleniya. Obosnovanie i skhodimost nelokalnykh metodov resheniya”, Izv. Irkutskogo gos. un-ta. Ser. matem., 6:1 (2013), 89–100 http://isu.ru/izvestia | MR | Zbl

[21] Evtushenko Yu. G., Optimizatsiya i bystroe avtomaticheskoe differentsirovanie, VTs RAN, M., 2013

[22] Korpelevich G. M., “Ekstragradientnyi metod dlya poiska sedlovykh tochek i drugikh prilozhenii”, Ekonomika i matem. metody, XII:6 (1976), 747–756

[23] Antipin A. S., “Ob odnom metode otyskaniya sedlovoi tochki modifitsirovannoi funktsii Lagranzha”, Ekonomika i matem. metody, XIII:3 (1977), 560–565 | MR | Zbl

[24] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR