$Q$-subdifferential and $Q$-conjugate for global optimality
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Normal cone and subdifferential have been generalized through various continuous functions; in this article, we focus on a non separable $Q$-subdifferential version. Necessary and sufficient optimality conditions for unconstrained nonconvex problems are revisited accordingly. For inequality constrained problems, $Q$-subdifferential and the lagrangian multipliers, enhanced as continuous functions instead of scalars, allow us to derive new necessary and sufficient optimality conditions. In the same way, the Legendre–Fenchel conjugate is generalized into $Q$-conjugate and global optimality conditions are derived by $Q$-conjugate as well, leading to a tighter inequality.
@article{ZVMMF_2014_54_2_a5,
     author = {D. Fortin and I. Tseveendorj},
     title = {$Q$-subdifferential and $Q$-conjugate for global optimality},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {256},
     year = {2014},
     volume = {54},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a5/}
}
TY  - JOUR
AU  - D. Fortin
AU  - I. Tseveendorj
TI  - $Q$-subdifferential and $Q$-conjugate for global optimality
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 256
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a5/
LA  - en
ID  - ZVMMF_2014_54_2_a5
ER  - 
%0 Journal Article
%A D. Fortin
%A I. Tseveendorj
%T $Q$-subdifferential and $Q$-conjugate for global optimality
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 256
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a5/
%G en
%F ZVMMF_2014_54_2_a5
D. Fortin; I. Tseveendorj. $Q$-subdifferential and $Q$-conjugate for global optimality. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a5/

[1] F. P. Vasiliev, Numerical Methods for Solving Extremal Problems, Nauka, M., 1988 (in Russian) | MR

[2] A. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic, Dordrecht, 2000 | MR

[3] A. M. Rubinov, Z. Y. Wu, “Optimality conditions in global optimization and their applications”, Math. Program. Ser. B, 120:1 (2009), 101–123 | DOI | MR | Zbl

[4] Z. Y. Wu, A. M. Rubinov, “Global optimality conditions for some classes of optimization problems”, J. Optim. Theory Appl., 145:1 (2010), 164–185 | DOI | MR | Zbl

[5] V. Jeyakumar, A. M. Rubinov, Z. Y. Wu, “Nonconvex quadratic minimization problems with quadratic constraints: Global optimality conditions”, Math. Program. Ser. A, 110 (2007), 521–541 | DOI | MR | Zbl

[6] F. Flores-Bazán, “On minima of the difference of functions”, J. Optim. Theory Appl., 93 (1997), 525–531 | DOI | MR | Zbl

[7] J.-B. Hiriart-Urruty, “Conditions néssaires et suffisantes d'optimalité globale en optimisation de différences de deux fonctions convexes”, C. R. Acad. Sci. Paris Ser. I Math., 309 (1989), 459–462 | MR | Zbl

[8] J.-B. Hiriart-Urruty, “Global optimality conditions in maximizing a convex quadratic function under convex quadratic constraints”, J. Global Optim., 21 (2001), 445–455 | DOI | MR

[9] I. Singer, Abstract Convex Analysis, Wiley, New York, 1997 | MR | Zbl

[10] J.-J. Moreau, Fonctionnelles convexes, v. 2, College de France, Paris, 1966–1967 (French) | MR

[11] A. S. Lewis, R. E. Lucchetti, “Nonsmooth duality, sandwich, and squeeze theorems”, SIAM J. Control Optim., 38 (2000), 613–626 | DOI | MR | Zbl