@article{ZVMMF_2014_54_2_a5,
author = {D. Fortin and I. Tseveendorj},
title = {$Q$-subdifferential and $Q$-conjugate for global optimality},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {256},
year = {2014},
volume = {54},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a5/}
}
D. Fortin; I. Tseveendorj. $Q$-subdifferential and $Q$-conjugate for global optimality. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a5/
[1] F. P. Vasiliev, Numerical Methods for Solving Extremal Problems, Nauka, M., 1988 (in Russian) | MR
[2] A. Rubinov, Abstract Convexity and Global Optimization, Kluwer Academic, Dordrecht, 2000 | MR
[3] A. M. Rubinov, Z. Y. Wu, “Optimality conditions in global optimization and their applications”, Math. Program. Ser. B, 120:1 (2009), 101–123 | DOI | MR | Zbl
[4] Z. Y. Wu, A. M. Rubinov, “Global optimality conditions for some classes of optimization problems”, J. Optim. Theory Appl., 145:1 (2010), 164–185 | DOI | MR | Zbl
[5] V. Jeyakumar, A. M. Rubinov, Z. Y. Wu, “Nonconvex quadratic minimization problems with quadratic constraints: Global optimality conditions”, Math. Program. Ser. A, 110 (2007), 521–541 | DOI | MR | Zbl
[6] F. Flores-Bazán, “On minima of the difference of functions”, J. Optim. Theory Appl., 93 (1997), 525–531 | DOI | MR | Zbl
[7] J.-B. Hiriart-Urruty, “Conditions néssaires et suffisantes d'optimalité globale en optimisation de différences de deux fonctions convexes”, C. R. Acad. Sci. Paris Ser. I Math., 309 (1989), 459–462 | MR | Zbl
[8] J.-B. Hiriart-Urruty, “Global optimality conditions in maximizing a convex quadratic function under convex quadratic constraints”, J. Global Optim., 21 (2001), 445–455 | DOI | MR
[9] I. Singer, Abstract Convex Analysis, Wiley, New York, 1997 | MR | Zbl
[10] J.-J. Moreau, Fonctionnelles convexes, v. 2, College de France, Paris, 1966–1967 (French) | MR
[11] A. S. Lewis, R. E. Lucchetti, “Nonsmooth duality, sandwich, and squeeze theorems”, SIAM J. Control Optim., 38 (2000), 613–626 | DOI | MR | Zbl