Algorithms for computing Minkowski operators and their application in differential games
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2, pp. 224-255 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Minkowski operators are considered, which extend the concepts of the Minkowski sum and difference to the case where one of the summands depends on an element of the other term. The properties of these operators are examined. Convolution methods of computer geometry and algorithms for computing the values of the Minkowski operators are developed. These algorithms are used to construct epsilon-optimal control strategies in a nonlinear differential game with a nonconvex target set. The errors of the proposed algorithms are estimated in detail. Numerical results for the conflicting control of a nonlinear pendulum are presented.
@article{ZVMMF_2014_54_2_a4,
     author = {P. E. Dvurechensky and G. E. Ivanov},
     title = {Algorithms for computing {Minkowski} operators and their application in~differential games},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {224--255},
     year = {2014},
     volume = {54},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a4/}
}
TY  - JOUR
AU  - P. E. Dvurechensky
AU  - G. E. Ivanov
TI  - Algorithms for computing Minkowski operators and their application in differential games
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 224
EP  - 255
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a4/
LA  - ru
ID  - ZVMMF_2014_54_2_a4
ER  - 
%0 Journal Article
%A P. E. Dvurechensky
%A G. E. Ivanov
%T Algorithms for computing Minkowski operators and their application in differential games
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 224-255
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a4/
%G ru
%F ZVMMF_2014_54_2_a4
P. E. Dvurechensky; G. E. Ivanov. Algorithms for computing Minkowski operators and their application in differential games. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2, pp. 224-255. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a4/

[1] Guibas L. J., Ramashaw L., Stolfi J., “A kinetic framework for computational geometry”, Proc. of the 24th Annual IEEE Symposium on Foundations of Computer Science, FOCS'83 (Tuscson, Arizona, 1983), 100–111

[2] Wein R., “Exact and efficient construction of planar Minkowski sums using the convolution method”, Proc. 14th European Symposium on Algorithms, ESA, LNCS, 4186, 2006, 829–840 | MR

[3] Flato E., Robust and efficient construction of planar Minkowski sums, Master's thesis, School of Computer Science. Tel-Aviv University, 2000

[4] Aizeks R., Differentsialnye igry, Mir, M., 1967 | MR

[5] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985 | MR

[6] Pontryagin L. S., “Lineinye differentsialnye igry presledovaniya”, Matem. sbornik, 112:3 (1980), 307–330 | MR | Zbl

[7] A. I. Subbotin, V. S. Patsko, Algoritmy i programmy resheniya lineinykh differentsialnykh igr, UNTs AN SSSR, Sverdlovsk, 1984

[8] Sintez optimalnogo upravleniya v igrovykh sistemakh, Sbornik nauchnykh trudov, UNTs AN SSSR, Sverdlovsk, 1986 | MR

[9] Upravlenie s garantirovannym rezultatom, Sbornik nauchnykh trudov, UNTs AN SSSR, Sverdlovsk, 1987

[10] Pozitsionnoe upravlenie s garantirovannym rezultatom, Sbornik nauchnykh trudov, UO AN SSSR, Sverdlovsk, 1988

[11] Upravlenie v dinamicheskikh sistemakh, Sbornik nauchnykh trudov, UO AN SSSR, Sverdlovsk, 1990

[12] Dvurechenskii P. E., Ivanov G. E., “Algoritm postroeniya optimalnoi strategii v nelineinoi differentsialnoi igre s ispolzovaniem konvolyuty”, Tr. MFTI, 3:1 (2011), 61–67 | MR

[13] Dvurechenskii P. E., Ivanov G. E., “Algoritm postroeniya optimalnoi strategii v nelineinoi differentsialnoi igre s nefiksirovannym vremenem okonchaniya”, Tr. MFTI, 4:4 (2012), 51–61

[14] Kamzolkin D. V., “O postroenii maksimalnykh stabilnykh mostov dlya odnogo klassa nelineinykh differentsialnykh igr sblizheniya”, Differents. ur-niya, 42:3 (2006), 338–346 | MR | Zbl

[15] Ivanov G. E., Kazeev V. A., “Minimaksnyi algoritm postroeniya optimalnoi strategii upravleniya v differentsialnoi igre s lipshitsevoi platoi”, Zh. vychisl. matem. i matem. fiz., 51:4 (2011), 594–619 | MR | Zbl

[16] Ivanov G. E., “Algoritm postroeniya optimalnoi strategii upravleniya v nelineinoi differentsialnoi igre s lipshitsevoi finitnoi platoi”, Differents. ur-niya, 48:4 (2012), 551–564 | Zbl