A relaxation method for minimizing a smooth function on a generalized spherical segment
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2, pp. 208-223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The minimization of a smooth functional on a generalized spherical segment of a finite-dimensional Euclidean space is examined. A relaxation method that involves successive projections of the antigradient onto auxiliary sets of a simpler structure is proposed. It is shown that, under certain natural assumptions, this method converges to a stationary point.
@article{ZVMMF_2014_54_2_a3,
     author = {A. M. Dulliev},
     title = {A relaxation method for minimizing a smooth function on a generalized spherical segment},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {208--223},
     year = {2014},
     volume = {54},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a3/}
}
TY  - JOUR
AU  - A. M. Dulliev
TI  - A relaxation method for minimizing a smooth function on a generalized spherical segment
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 208
EP  - 223
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a3/
LA  - ru
ID  - ZVMMF_2014_54_2_a3
ER  - 
%0 Journal Article
%A A. M. Dulliev
%T A relaxation method for minimizing a smooth function on a generalized spherical segment
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 208-223
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a3/
%G ru
%F ZVMMF_2014_54_2_a3
A. M. Dulliev. A relaxation method for minimizing a smooth function on a generalized spherical segment. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2, pp. 208-223. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a3/

[1] Zabotin V. I., Chernyaev Yu. A., “Obobschenie metoda proektsii gradienta na ekstremalnye zadachi s predvypuklymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 41:3 (2001), 367–373 | MR | Zbl

[2] Chernyaev Yu. A., “Skhodimost metoda proektsii gradienta dlya odnogo klassa nevypuklykh zadach matematicheskogo programmirovaniya”, Izv. vyssh. uchebn. zavedenii. Matematika, 2005, no. 12, 76–79 | MR

[3] Minnibaev T. F., Chernyaev Yu. A., “Iteratsionnyi algoritm resheniya zadachi matematicheskogo programmirovaniya s predvypuklymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 50:5 (2010), 832–835 | MR | Zbl

[4] Zabotin V. I., Chernyaev Yu. A., “Skhodimost iteratsionnogo metoda resheniya zadachi matematicheskogo programmirovaniya s ogranicheniem v vide vypukloi gladkoi poverkhnosti”, Zh. vychisl. matem. i matem. fiz., 44:4 (2004), 609–612 | MR | Zbl

[5] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[6] Dulliev A. M., Zabotin V. I., “Iteratsionnyi algoritm proektirovaniya tochki na nevypukloe mnogoobrazie v lineinom normirovannom prostranstve”, Zh. vychisl. matem. i matem. fiz., 44:5 (2004), 827–830 | MR | Zbl