Formulation of wall boundary conditions in turbulent flow computations on unstructured meshes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2, pp. 336-351 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Features of the formulation and numerical implementation of wall boundary conditions in turbulent flow computations on unstructured meshes are discussed. A method is proposed for implementing weak wall boundary conditions for a finite-volume discretization of the Reynolds-averaged Navier–Stokes equations on unstructured meshes. The capabilities of the approach are demonstrated in several gasdynamic simulations in comparison with the method of near-wall functions. The influence of the near-wall resolution on the accuracy of the computations is analyzed, and the grid dependence of the solution is compared in the case of the near-wall function method and weak boundary conditions.
@article{ZVMMF_2014_54_2_a10,
     author = {K. N. Volkov},
     title = {Formulation of wall boundary conditions in turbulent flow computations on unstructured meshes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {336--351},
     year = {2014},
     volume = {54},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a10/}
}
TY  - JOUR
AU  - K. N. Volkov
TI  - Formulation of wall boundary conditions in turbulent flow computations on unstructured meshes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 336
EP  - 351
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a10/
LA  - ru
ID  - ZVMMF_2014_54_2_a10
ER  - 
%0 Journal Article
%A K. N. Volkov
%T Formulation of wall boundary conditions in turbulent flow computations on unstructured meshes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 336-351
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a10/
%G ru
%F ZVMMF_2014_54_2_a10
K. N. Volkov. Formulation of wall boundary conditions in turbulent flow computations on unstructured meshes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2, pp. 336-351. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a10/

[1] Spalart P. R., Allmaras S. R., A one equation turbulence model for aerodynamic flows, AIAA Paper No 92-0439, 1992

[2] Launder B. E., Spalding D. B., “The numerical computation of turbulent flows”, Comput. Meth. in Appl. Mech. and Engng., 3:2 (1974), 269–289 | DOI | Zbl

[3] Volkov K. N., Emelyanov V. N., Modelirovanie krupnykh vikhrei v raschetakh turbulentnykh techenii, Fizmatlit, M., 2008

[4] Bredberg J., On the wall boundary condition for turbulence model, Report of Chalmers University of Technology, No 00/4, 2000

[5] Collis S. S., Discontinuous Galerkin methods for turbulence simulation, Technical Report, Stanford University, Center for Turbulence Research, 2002

[6] Volkov K. N., “Granichnye usloviya na stenke i setochnaya zavisimost resheniya v raschetakh turbulentnykh techenii na nestrukturirovannykh setkakh”, Vychisl. metody i programmirovanie, 7:1 (2006), 211–223

[7] Volkov K. N., “Pristenochnoe modelirovanie v raschetakh turbulentnykh techenii na nestrukturirovannykh setkakh”, Teplofizika i aeromekhanika, 14:1 (2007), 113–129 | MR

[8] Kato M., Launder B. E., “The modelling of turbulent flow around stationary and vibrating square cylinders”, Proc. 9th Symposium on Turbulent Shear Flows (16–18 August 1993, Kyoto, Japan), v. 9, 1993, 10.4.1–10.4.6

[9] Leschziner M. A., Rodi W., “Calculation of annular and twin parallel jets using various discretization schemes and turbulent-model variations”, J. Fluids Engeng., 103 (1981), 353–360

[10] Volkov K. N., “Konechno-ob'emnaya diskretizatsiya uravnenii Nave–Stoksa na nestrukturirovannoi setke pri pomoschi raznostnykh skhem povyshennoi razreshayuschei sposobnosti”, Zh. vychisl. matem. i matem. fiz., 48:7 (2008), 1250–1273 | MR

[11] Volkov K. N., “Mnogosetochnye tekhnologii dlya resheniya zadach gazovoi dinamiki na nestrukturirovannykh setkakh”, Zh. vychisl. matem. i matem. fiz., 50:11 (2010), 1938–1952 | MR | Zbl

[12] Volkov K. N., “Predobuslovlivanie uravnenii Eilera i Nave–Stoksa pri modelirovanii nizkoskorostnykh techenii na nestrukturirovannykh setkakh”, Zh. vychisl. matem. i matem. fiz., 49:10 (2009), 1868–1884 | MR | Zbl

[13] Deck S., Duveau P., d'Espiney P., Guillen P., “Development and application of Spalart–Allmaxas one-equation turbulence model to three-dimensional supersonic complex configurations”, Aerospace Sci. and Technology, 6:3 (2002), 171–183 | DOI | MR | Zbl

[14] Wieghardt K., Tillman W., On the turbulent friction layer for rising pressure, NACA Report, No TM-1314, 1951

[15] Yoder D. A., Georgiadis N. J., Implementation and validation of the Chien $k-\varepsilon$ turbulence model in the WIND Navier–Stokes code, AIAA Paper, No 99-0745, 1999

[16] Teekaram A. J. H., Forth C. J. P., Jones T. V., “Film cooling in the presence of mainstream pressure gradients”, J. Turbomachinery, 113 (1991), 484–492 | DOI

[17] Volkov K. N., “Vliyanie gradienta davleniya i lokalizovannogo vduva na turbulentnyi teploobmen ploskoi plastiny”, Teplofizika vysokikh temperatur, 44:3 (2006), 24–32