@article{ZVMMF_2014_54_2_a1,
author = {E. A. Tsvetkov},
title = {Variance reduction techniques for estimation of integrals over a set of branching trajectories},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {183--194},
year = {2014},
volume = {54},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a1/}
}
TY - JOUR AU - E. A. Tsvetkov TI - Variance reduction techniques for estimation of integrals over a set of branching trajectories JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 183 EP - 194 VL - 54 IS - 2 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a1/ LA - ru ID - ZVMMF_2014_54_2_a1 ER -
%0 Journal Article %A E. A. Tsvetkov %T Variance reduction techniques for estimation of integrals over a set of branching trajectories %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 183-194 %V 54 %N 2 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a1/ %G ru %F ZVMMF_2014_54_2_a1
E. A. Tsvetkov. Variance reduction techniques for estimation of integrals over a set of branching trajectories. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2, pp. 183-194. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a1/
[1] Booth T., “Monte Carlo variance reucation approaches for non-Boltzmann tallies”, Nuclear Sci. and Engng., 116 (1994), 113–124
[2] Valentine T., MCNP-DSP users manual, Tech. Rep. ORNL/TM-13334, Oak Ridge Nat. Lab., 1997
[3] Mori T., Okumura K., Magaya Y., “Development of the MVP Monte Carlo code at JAERI”, Trabs. of the ANS, 84 (2001), 45–46
[4] Ficaro E., KENO-NR: A Monte Carlo simulating the $^{252}\mathrm{Cf}$-source-driven noise analysis experimental method for determining subcriticality, Ph. D. thesis, University of Michigan, 1991
[5] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR
[6] Ermakov S. M., Metod Monte-Karlo i smezhnye voprosy, Nauka, M., 1975 | MR | Zbl
[7] Marchuk G. I., Mikhailov G. A., Nazarliev M. A. i dr., Metod Monte-Karlo v atmosfernoi optike, ed. G. I. Marchuk, Nauka, Novosibirsk, 1976 | Zbl
[8] Mikhailov G. A., Optimizatsiya vesovykh metodov Monte-Karlo, Nauka, M., 1987 | MR
[9] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR
[10] Uchaikin V. V., Lagutin A. A., Stokhasticheskaya tsennost, Energoatomizdat, M., 1993 | MR
[11] Lappa A. V., Burmistrov D. S., “Novye fluktuatsionnye vesovye metody Monte-Karlo i ikh primenenie k kaskadnym protsessam perenosa chastits sverkhvysokikh energii”, Matem. modelirovanie, 7:5 (1995), 100–114
[12] Lappa A. V., “Vesovaya otsenka metoda Monte-Karlo dlya rascheta vysshikh momentov additivnykh kharakteristik perenosa chastits s razmnozheniem”, Zh. vychisl. matem. i matem. fiz., 30:1 (1990), 122–134 | MR
[13] Borisov N. M., Panin M. P., “Adjoint Monte Carlo calculations for pulse-height-spectrum”, Monte Carlo Methods and Applications, 4:3 (1998), 273–284 | DOI | MR | Zbl
[14] Borisov N. M., Primenenie sopryazhennykh metodov Monte-Karlo v zadachakh perenosa fotonov s uchetom vtorichnogo izlucheniya, Diss. ... kand. fiz-matem. nauk, MIFI, M., 1999
[15] Booth T., Pulse height tally variance reduction in MCNP5, Tech. Rep. LA-13995, Los Alamos Nat. Lab., 1994
[16] Hendricks J., McKinney G. W., “Pulse height tallies with variance reduction”, Proc. of Monte Carlo 2005 (Chattanooga, Tennesse, USA, April 17–21, 2005)
[17] Shuttleworth E., “The pulse height distribution tally in MCBEND”, Proc. of International Conference on Radiation Schielding ICRS'9 (Tsukuba, Japan, 17–22 October, 1999)
[18] Szieberth M., Kloosterman J., “New methods for the Monte Carlo simulation of neutron noise experiments”, Proc. of Seventh Information Exchange Meeting on Actinide and Fission Product Partitioning and transmutation (Jeju, Korea, October 14–16, 2002)
[19] Nekrutkin V. V., “Vychislenie integralov po prostranstvu derevev metodom Monte-Karlo”, Metody Monte-Karlo v vychislitelnoi matematike i matematicheskoi fizike, VTs SO AN SSSR, 1974, 94–102
[20] Ermakov S. M., Nekrutkin V. V., Sipin A. S., Sluchainye protsessy dlya resheniya klassicheskikh uravnenii matematicheskoi fiziki, Nauka, M., 1984 | MR
[21] Dynkin E. B., Osnovaniya teorii markovskikh protsessov, Fizmatgiz, M., 1959 | MR
[22] Kharris T., Teoriya vetvyaschikhsya sluchainykh protsessov, Mir, M., 1966
[23] J. Briesmeister (ed.), MCNP. A general Monte Carlo $N$-particle transport code. Version 4C, Manual LA-13709-M, Los Alamos Nat. Lab., 2000
[24] Tsvetkov E. A., Shakhovskii V. V., “Obosnovanie DXTRAN-modifikatsii metoda Monte-Karlo na osnove sootnoshenii vzaimnosti dlya razlichayuschikhsya sistem”, Trudy MFTI, 1:2 (2009), 207–215 | MR