Numerical solution of the matrix equations $AX+X^TB=C$ and $AX+X^*B=C$ in the self-adjoint case
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2, pp. 179-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The numerical algorithms for solving equations of the type $AX+X^TB=C$ or $AX+X^*B=C$ that were earlier proposed by the authors are now modified for the situations where these equations can be regarded as self-adjoint ones. The economy in computational time and work achieved through these modifications is illustrated by numerical results.
@article{ZVMMF_2014_54_2_a0,
     author = {Yu. O. Vorontsov and Khakim D. Ikramov},
     title = {Numerical solution of the matrix equations $AX+X^TB=C$ and $AX+X^*B=C$ in the self-adjoint case},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {179--182},
     year = {2014},
     volume = {54},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a0/}
}
TY  - JOUR
AU  - Yu. O. Vorontsov
AU  - Khakim D. Ikramov
TI  - Numerical solution of the matrix equations $AX+X^TB=C$ and $AX+X^*B=C$ in the self-adjoint case
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 179
EP  - 182
VL  - 54
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a0/
LA  - ru
ID  - ZVMMF_2014_54_2_a0
ER  - 
%0 Journal Article
%A Yu. O. Vorontsov
%A Khakim D. Ikramov
%T Numerical solution of the matrix equations $AX+X^TB=C$ and $AX+X^*B=C$ in the self-adjoint case
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 179-182
%V 54
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a0/
%G ru
%F ZVMMF_2014_54_2_a0
Yu. O. Vorontsov; Khakim D. Ikramov. Numerical solution of the matrix equations $AX+X^TB=C$ and $AX+X^*B=C$ in the self-adjoint case. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 2, pp. 179-182. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_2_a0/

[1] Ikramov Kh. D., “Ob usloviyakh odnoznachnoi razreshimosti matrichnogo uravneniya $AX+X^TB=C$”, Dokl. AN, 430:4 (2010), 444–447 | MR | Zbl

[2] Ikramov Kh. D., Vorontsov Yu. O., “Ob odnoznachnoi razreshimosti matrichnogo uravneniya $AX+X^TB=C$ v singulyarnom sluchae”, Dokl. AN, 438:5 (2011), 599–602 | MR | Zbl

[3] Vorontsov Yu. O., Ikramov Kh. D., “Chislennyi algoritm dlya resheniya matrichnogo uravneniya $AX+X^TB=C$”, Zh. vychisl. matem. i matem. fiz., 51:5 (2011), 739–747 | MR | Zbl

[4] Vorontsov Yu. O., Ikramov Kh. D., “Ob usloviyakh odnoznachnoi razreshimosti matrichnogo uravneniya $AX+X^*B=C$”, Zh. vychisl. matem. i matem. fiz., 52:5 (2012), 775–783

[5] Vorontsov Yu. O., “Chislennyi algoritm dlya resheniya matrichnogo uravneniya $AX+X^*B=C$”, Vestn. Mosk. un-ta. Ser. 15. Vychisl. matem. i kibernetika, 2013, no. 1, 1–7 | MR | Zbl

[6] Ikramov Kh. D., “Lineinye matrichnye uravneniya tipa Silvestra v samosopryazhennom sluchae”, Dokl. AN, 450:2 (2013), 147–149 | DOI | Zbl

[7] Ikramov Kh. D., “Usloviya samosopryazhennosti polulineinykh matrichnykh uravnenii”, Dokl. AN, 450:5 (2013), 511–513 | DOI | MR | Zbl