Ellipticity of the electric field integral equation for absorbing media and the convergence of the Rao–Wilton–Glisson method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 105-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The operator of the electric field integral equation is proved to be elliptic in the case of a flat screen and absorbing media. The method of quadratic forms is applied. As a result, the Rao–Wilton–Glisson method is shown to converge in the case of a flat screen in an absorbing medium.
@article{ZVMMF_2014_54_1_a8,
     author = {M. Yu. Medvedik and Yu. G. Smirnov},
     title = {Ellipticity of the electric field integral equation for absorbing media and the convergence of the {Rao{\textendash}Wilton{\textendash}Glisson} method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {105--113},
     year = {2014},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a8/}
}
TY  - JOUR
AU  - M. Yu. Medvedik
AU  - Yu. G. Smirnov
TI  - Ellipticity of the electric field integral equation for absorbing media and the convergence of the Rao–Wilton–Glisson method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 105
EP  - 113
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a8/
LA  - ru
ID  - ZVMMF_2014_54_1_a8
ER  - 
%0 Journal Article
%A M. Yu. Medvedik
%A Yu. G. Smirnov
%T Ellipticity of the electric field integral equation for absorbing media and the convergence of the Rao–Wilton–Glisson method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 105-113
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a8/
%G ru
%F ZVMMF_2014_54_1_a8
M. Yu. Medvedik; Yu. G. Smirnov. Ellipticity of the electric field integral equation for absorbing media and the convergence of the Rao–Wilton–Glisson method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 105-113. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a8/

[1] Khenl Kh., Maue A., Vestpfal K., Teoriya difraktsii, Mir, M., 1964

[2] Maue A. W., “Toward formulator of a general diffraction problem via an integral equation”, Zeitschrift fur Physik, 12 (1949), 601–618 | DOI | MR

[3] Rao S. M., Wilton D. R., Glisson A. W., “Electromagnetic scattering by surfaces of arbitrary shape”, IEEE Trans. Antennas Propagation, AP-30:3 (1982), 409–418 | DOI

[4] Raviart P. A., Thomas J.-M., “A mixed finite element method for 2$^\mathrm{nd}$ order elliptic problems”, Lect. Notes in Math., 606, Springer, Berlin–New York, 1977, 292–315 | DOI | MR

[5] Nedelec J.-C., “Mixed finite elements in $\mathrm{R}^3$”, Numer. Math., 35 (1980), 315–341 | DOI | MR | Zbl

[6] Smirnov Yu. G., “O fredgolmovosti zadachi difraktsii na ploskom ogranichennom idealno provodyaschem ekrane”, Dokl. AN SSSR, 319:1 (1991), 147–149

[7] Smirnov Yu. G., “O fredgolmovosti sistemy psevdodifferentsialnykh uravnenii v zadache difraktsii na ogranichennom ekrane”, Differen. ur-niya, 28:1 (1992), 136–143

[8] Ilinskii A. S., Smirnov Yu. G., Difraktsiya elektromagnitnykh voln na provodyaschikh tonkikh ekranakh, IPRZhR, M., 1996

[9] Ilyinsky A. S., Smirnov Yu. G., Electromagnetic wave diffraction by conducting screens, VSP, Utrecht, the Netherlands, 1998

[10] Smirnov Yu. G., Matematicheskie metody issledovaniya zadach elektrodinamiki, Informatsionno-izdatelskii tsentr PGU, Penza, 2009

[11] Costabel M., “Boundary integral operators on lipschitz domains: elementary results”, SIAM J. Math. Anal., 19:3 (1988), 613–626 | DOI | MR | Zbl

[12] Kress R., Linear integral equations, Applied Mathematical sciences, 82, Springer-Verlag, New York, 1989 | DOI | MR | Zbl

[13] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[14] Paivarinta L., Rempel S., “A deconvolution problem with Kernel $1/|x|$ on the plane”, Appl. Anal., 26 (1987), 105–128 | DOI | MR | Zbl

[15] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[16] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[17] Smirnov Yu. G., “O skhodimosti metodov Galerkina dlya uravnenii s operatorami, ellipticheskimi na podprostranstvakh, ior eshenii uravneniya elektricheskogo polya”, Zh. vychisl. matem. i matem. fiz., 47:1 (2007), 129–139 | MR | Zbl