Multi-component Wronskian solution to the Kadomtsev–Petviashvili equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that the Kadomtsev–Petviashvili (KP) equation can be decomposed into the first two members of the coupled Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy by the binary non-linearization of Lax pairs. In this paper, we construct the $N$-th iterated Darboux transformation (DT) for the second- and third-order $m$-coupled AKNS systems. By using together the $N$-th iterated DT and Cramer’s rule, we find that the KPII equation has the unreduced multi-component Wronskian solution and the KPI equation admits a reduced multi-component Wronskian solution. In particular, based on the unreduced and reduced two-component Wronskians, we obtain two families of fully-resonant line-soliton solutions which contain arbitrary numbers of asymptotic solitons as $y\to\mp\infty$ to the KPII equation, and the ordinary $N$-soliton solution to the KPI equation. In addition, we find that the KPI line solitons propagating in parallel can exhibit the bound state at the moment of collision.
@article{ZVMMF_2014_54_1_a7,
     author = {Tao Xu and Fu-Wei Sun and Yi Zhang and Juan Li},
     title = {Multi-component {Wronskian} solution to the {Kadomtsev{\textendash}Petviashvili} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {104},
     year = {2014},
     volume = {54},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a7/}
}
TY  - JOUR
AU  - Tao Xu
AU  - Fu-Wei Sun
AU  - Yi Zhang
AU  - Juan Li
TI  - Multi-component Wronskian solution to the Kadomtsev–Petviashvili equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 104
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a7/
LA  - en
ID  - ZVMMF_2014_54_1_a7
ER  - 
%0 Journal Article
%A Tao Xu
%A Fu-Wei Sun
%A Yi Zhang
%A Juan Li
%T Multi-component Wronskian solution to the Kadomtsev–Petviashvili equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 104
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a7/
%G en
%F ZVMMF_2014_54_1_a7
Tao Xu; Fu-Wei Sun; Yi Zhang; Juan Li. Multi-component Wronskian solution to the Kadomtsev–Petviashvili equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a7/

[1] B. B. Kadomtsev, V. I. Petviashvili, “On the stability of solitary waves in weakly dispersing media”, Sov. Phys. Dokl., 15 (1970), 539–541 | Zbl

[2] M. J. Ablowitz, H. Segur, “On the evolution of packets of water waves”, J. Fluid Mech., 92 (1979), 691–715 | DOI | MR | Zbl

[3] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1992 | MR

[4] V. S. Dryuma, “Analytic solution of the two-dimensional Korteweg-de Vries equation”, Sov. Phys. JETP Lett., 19 (1974), 387–388

[5] J. Satsuma, M. J. Ablowitz, “Two-dimensional lumps in nonlinear dispersive systems”, J. Math. Phys., 20 (1979), 1496–1503 | DOI | MR | Zbl

[6] J. Satsuma, “$N$-soliton solution of the two-dimensional Korteweg-de Vries equation”, J. Phys. Soc. Jpn., 40 (1976), 286–290 | DOI | MR

[7] W. Oevel, B. Fuchssteiner, “Explicit formulas for symmetries and conservation laws of the Kadomtsev–Petviashvili equation”, Phys. Lett. A, 88 (1982), 323–327 | DOI | MR

[8] J. Weiss, M. Tabor, G. Carnevale, “The Painlevé property for partial differential equations”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl

[9] H. H. Chen, “A Bäcklund transformation in two dimensions”, J. Math. Phys., 16 (1975), 2382–2384 | DOI | MR

[10] V. B. Matveev, “Darboux transformation and explicit solutions of the Kadomtsev–Petviashvili equation, depending on functional parameters”, Lett. Math. Phys., 3 (1979), 213–216 | DOI | MR | Zbl

[11] A. S. Fokas, P. M. Santini, “The recursion operator of the Kadomtsev–Petviashvili equation and the squared eigenfunctions of the Schrödinger operator”, Stud. Appl. Math., 75 (1986), 179–185 | MR | Zbl

[12] A. S. Fokas, P. M. Santini, “Bi-Hamiltonian formulation of the Kadomtsev–Petviashvili and Benjamin–Ono equations”, J. Math. Phys., 29 (1988), 604–617 | DOI | MR | Zbl

[13] M. Tajiri, T. Nishitani, S. Kawamoto, “Similarity solutions of the Kadomtsev–Petviashvili equation”, J. Phys. Soc. Jpn., 51 (1982), 2350–2356 | DOI | MR

[14] D. David, D. Levi, P. Winternitz, “Symmetry reduction for the Kadomtsev–Petviashvili equation using a loop algebra”, J. Math. Phys., 27 (1986), 1225–1237 | DOI | MR | Zbl

[15] S. Y. Lou, “Similarity solutions of the Kadomtsev–Petviashvili equation”, J. Phys. A, 23 (1990), L649–L654 | DOI | MR | Zbl

[16] G. Biondini, Y. Kodama, “On a family of solutions of the Kadomtsev–Petviashvili equation which also satisfy the Toda lattice hierarchy”, J. Phys. A, 36 (2003), 10519–10536 | DOI | MR | Zbl

[17] G. Biondini, S. Chakravarty, “Soliton solutions of the Kadomtsev–Petviashvili II equation”, J. Math. Phys., 47 (2006), 033514, 26 pp. | DOI | MR | Zbl

[18] G. Biondini, “Line soliton interactions of the Kadomtsev–Petviashvili equation”, Phys. Rev. Lett., 99 (2007), 064103, 4 pp. | DOI

[19] S. Chakravarty, Y. Kodama, “Classification of the soliton solutions of KPII”, J. Phys. A, 41 (2008), 275209, 33 pp. | DOI | MR | Zbl

[20] S. Chakravarty, Y. Kodama, “Soliton solutions of the KP equation and application to shallow water waves”, Stud. Appl. Math., 123 (2009), 83–151 | DOI | MR | Zbl

[21] Y. Kodama, M. Oikawa, H. Tsuji, “Soliton solutions of the KP equation with V-shape initial waves”, J. Phys. A, 42 (2009), 312001, 9 pp. | DOI | MR | Zbl

[22] Y. Kodama, “KP solitons in shallow water”, J. Phys. A, 43 (2010), 434004, 54 pp. | DOI | MR | Zbl

[23] C. Y. Kao, Y. Kodama, “Numerical study of the KP equation for nonperiodic waves”, Math. Comput. Simul., 82 (2012), 1185–1218 | DOI | MR | Zbl

[24] N. C. Freeman, J. J. C. Nimmo, “Soliton-solutions of the Korteweg-de Vries and Kadomtsev–Petviashvili equations: The Wronskian technique”, Phys. Lett. A, 95 (1983), 1–3 | DOI | MR

[25] G. Biondini, T. Xu, Irreducible, totally nonnegative Grassmann cells, irreducible Le-diagrams and derangements, submitted

[26] A. Postnikov, Total positivity, Grassmannians, and networks, 2006, arXiv: math.CO/0609764

[27] B. Konopelchenko, J. Sidorenko, W. Strampp, “$(1+1)$-dimensional integrable systems as symmetry constraints of $(2+1)$-dimensional systems”, Phys. Lett. A, 157 (1991), 17–21 | DOI | MR

[28] Y. Cheng, Y. S. Li, “The constraint of the Kadomtsev–Petviashvili equation and its special solutions”, Phys. Lett. A, 157 (1991), 22–26 | DOI | MR

[29] T. Xu, B. Tian, “An extension of the Wronskian technique for the multicomponent Wronskian solution to the vector nonlinear Schrödinger equation”, J. Math. Phys., 51 (2010), 033504, 21 pp. | DOI | MR

[30] T. Xu, B. Tian, Y. S. Xue, F. H. Qi, “Direct analysis of the bright-soliton collisions in the focusing vector nonlinear Schrödinger equation”, Europhys. Lett., 92 (2010), 50002, 5 pp. | DOI

[31] T. Xu, B. Tian, F. H. Qi, “Bright $N$-soliton solution to the vector Hirota equation from nonlinear optics with symbolic computation”, Z. Naturforsch., 68a (2013), 261–271 | DOI

[32] C. H. Gu, H. S. Hu, Z. X. Zhou, Darboux Transformation in Soliton Theory and Its Geometric Applications, Shanghai Sci.-Tech. Pub., Shanghai, 2005

[33] Q. P. Liu, “Double Wronskian solutions of the AKNS and the classical Boussinesq hierarchies”, J. Phys. Soc. Jpn., 59 (1990), 3520–3527 | DOI | MR

[34] M. J. Ablowitz, R. Haberman, “Resonantly coupled nonlinear evolution equations”, J. Math. Phys., 16 (1975), 2301–2305 | DOI | MR

[35] A. P. Fordy, P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Commun. Math. Phys., 89 (1983), 427–443 | DOI | MR | Zbl

[36] T. Tsuchida, M. Wadati, “The coupled modified Korteweg-de Vries equations”, J. Phys. Soc. Jpn., 67 (1998), 1175–1187 | DOI | MR | Zbl

[37] E. Infeld, G. Rowlands, Nonlinear Waves, Solitons, and Chaos, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[38] M. Haelterman, A. Sheppard, “Bifurcation phenomena and multiple soliton-bound states in isotropic Kerr media”, Phys. Rev. E, 49 (1994), 3376–3381 | DOI | MR