@article{ZVMMF_2014_54_1_a7,
author = {Tao Xu and Fu-Wei Sun and Yi Zhang and Juan Li},
title = {Multi-component {Wronskian} solution to the {Kadomtsev{\textendash}Petviashvili} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {104},
year = {2014},
volume = {54},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a7/}
}
TY - JOUR AU - Tao Xu AU - Fu-Wei Sun AU - Yi Zhang AU - Juan Li TI - Multi-component Wronskian solution to the Kadomtsev–Petviashvili equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 104 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a7/ LA - en ID - ZVMMF_2014_54_1_a7 ER -
%0 Journal Article %A Tao Xu %A Fu-Wei Sun %A Yi Zhang %A Juan Li %T Multi-component Wronskian solution to the Kadomtsev–Petviashvili equation %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 104 %V 54 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a7/ %G en %F ZVMMF_2014_54_1_a7
Tao Xu; Fu-Wei Sun; Yi Zhang; Juan Li. Multi-component Wronskian solution to the Kadomtsev–Petviashvili equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a7/
[1] B. B. Kadomtsev, V. I. Petviashvili, “On the stability of solitary waves in weakly dispersing media”, Sov. Phys. Dokl., 15 (1970), 539–541 | Zbl
[2] M. J. Ablowitz, H. Segur, “On the evolution of packets of water waves”, J. Fluid Mech., 92 (1979), 691–715 | DOI | MR | Zbl
[3] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations, and Inverse Scattering, Cambridge Univ. Press, Cambridge, 1992 | MR
[4] V. S. Dryuma, “Analytic solution of the two-dimensional Korteweg-de Vries equation”, Sov. Phys. JETP Lett., 19 (1974), 387–388
[5] J. Satsuma, M. J. Ablowitz, “Two-dimensional lumps in nonlinear dispersive systems”, J. Math. Phys., 20 (1979), 1496–1503 | DOI | MR | Zbl
[6] J. Satsuma, “$N$-soliton solution of the two-dimensional Korteweg-de Vries equation”, J. Phys. Soc. Jpn., 40 (1976), 286–290 | DOI | MR
[7] W. Oevel, B. Fuchssteiner, “Explicit formulas for symmetries and conservation laws of the Kadomtsev–Petviashvili equation”, Phys. Lett. A, 88 (1982), 323–327 | DOI | MR
[8] J. Weiss, M. Tabor, G. Carnevale, “The Painlevé property for partial differential equations”, J. Math. Phys., 24 (1983), 522–526 | DOI | MR | Zbl
[9] H. H. Chen, “A Bäcklund transformation in two dimensions”, J. Math. Phys., 16 (1975), 2382–2384 | DOI | MR
[10] V. B. Matveev, “Darboux transformation and explicit solutions of the Kadomtsev–Petviashvili equation, depending on functional parameters”, Lett. Math. Phys., 3 (1979), 213–216 | DOI | MR | Zbl
[11] A. S. Fokas, P. M. Santini, “The recursion operator of the Kadomtsev–Petviashvili equation and the squared eigenfunctions of the Schrödinger operator”, Stud. Appl. Math., 75 (1986), 179–185 | MR | Zbl
[12] A. S. Fokas, P. M. Santini, “Bi-Hamiltonian formulation of the Kadomtsev–Petviashvili and Benjamin–Ono equations”, J. Math. Phys., 29 (1988), 604–617 | DOI | MR | Zbl
[13] M. Tajiri, T. Nishitani, S. Kawamoto, “Similarity solutions of the Kadomtsev–Petviashvili equation”, J. Phys. Soc. Jpn., 51 (1982), 2350–2356 | DOI | MR
[14] D. David, D. Levi, P. Winternitz, “Symmetry reduction for the Kadomtsev–Petviashvili equation using a loop algebra”, J. Math. Phys., 27 (1986), 1225–1237 | DOI | MR | Zbl
[15] S. Y. Lou, “Similarity solutions of the Kadomtsev–Petviashvili equation”, J. Phys. A, 23 (1990), L649–L654 | DOI | MR | Zbl
[16] G. Biondini, Y. Kodama, “On a family of solutions of the Kadomtsev–Petviashvili equation which also satisfy the Toda lattice hierarchy”, J. Phys. A, 36 (2003), 10519–10536 | DOI | MR | Zbl
[17] G. Biondini, S. Chakravarty, “Soliton solutions of the Kadomtsev–Petviashvili II equation”, J. Math. Phys., 47 (2006), 033514, 26 pp. | DOI | MR | Zbl
[18] G. Biondini, “Line soliton interactions of the Kadomtsev–Petviashvili equation”, Phys. Rev. Lett., 99 (2007), 064103, 4 pp. | DOI
[19] S. Chakravarty, Y. Kodama, “Classification of the soliton solutions of KPII”, J. Phys. A, 41 (2008), 275209, 33 pp. | DOI | MR | Zbl
[20] S. Chakravarty, Y. Kodama, “Soliton solutions of the KP equation and application to shallow water waves”, Stud. Appl. Math., 123 (2009), 83–151 | DOI | MR | Zbl
[21] Y. Kodama, M. Oikawa, H. Tsuji, “Soliton solutions of the KP equation with V-shape initial waves”, J. Phys. A, 42 (2009), 312001, 9 pp. | DOI | MR | Zbl
[22] Y. Kodama, “KP solitons in shallow water”, J. Phys. A, 43 (2010), 434004, 54 pp. | DOI | MR | Zbl
[23] C. Y. Kao, Y. Kodama, “Numerical study of the KP equation for nonperiodic waves”, Math. Comput. Simul., 82 (2012), 1185–1218 | DOI | MR | Zbl
[24] N. C. Freeman, J. J. C. Nimmo, “Soliton-solutions of the Korteweg-de Vries and Kadomtsev–Petviashvili equations: The Wronskian technique”, Phys. Lett. A, 95 (1983), 1–3 | DOI | MR
[25] G. Biondini, T. Xu, Irreducible, totally nonnegative Grassmann cells, irreducible Le-diagrams and derangements, submitted
[26] A. Postnikov, Total positivity, Grassmannians, and networks, 2006, arXiv: math.CO/0609764
[27] B. Konopelchenko, J. Sidorenko, W. Strampp, “$(1+1)$-dimensional integrable systems as symmetry constraints of $(2+1)$-dimensional systems”, Phys. Lett. A, 157 (1991), 17–21 | DOI | MR
[28] Y. Cheng, Y. S. Li, “The constraint of the Kadomtsev–Petviashvili equation and its special solutions”, Phys. Lett. A, 157 (1991), 22–26 | DOI | MR
[29] T. Xu, B. Tian, “An extension of the Wronskian technique for the multicomponent Wronskian solution to the vector nonlinear Schrödinger equation”, J. Math. Phys., 51 (2010), 033504, 21 pp. | DOI | MR
[30] T. Xu, B. Tian, Y. S. Xue, F. H. Qi, “Direct analysis of the bright-soliton collisions in the focusing vector nonlinear Schrödinger equation”, Europhys. Lett., 92 (2010), 50002, 5 pp. | DOI
[31] T. Xu, B. Tian, F. H. Qi, “Bright $N$-soliton solution to the vector Hirota equation from nonlinear optics with symbolic computation”, Z. Naturforsch., 68a (2013), 261–271 | DOI
[32] C. H. Gu, H. S. Hu, Z. X. Zhou, Darboux Transformation in Soliton Theory and Its Geometric Applications, Shanghai Sci.-Tech. Pub., Shanghai, 2005
[33] Q. P. Liu, “Double Wronskian solutions of the AKNS and the classical Boussinesq hierarchies”, J. Phys. Soc. Jpn., 59 (1990), 3520–3527 | DOI | MR
[34] M. J. Ablowitz, R. Haberman, “Resonantly coupled nonlinear evolution equations”, J. Math. Phys., 16 (1975), 2301–2305 | DOI | MR
[35] A. P. Fordy, P. P. Kulish, “Nonlinear Schrödinger equations and simple Lie algebras”, Commun. Math. Phys., 89 (1983), 427–443 | DOI | MR | Zbl
[36] T. Tsuchida, M. Wadati, “The coupled modified Korteweg-de Vries equations”, J. Phys. Soc. Jpn., 67 (1998), 1175–1187 | DOI | MR | Zbl
[37] E. Infeld, G. Rowlands, Nonlinear Waves, Solitons, and Chaos, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[38] M. Haelterman, A. Sheppard, “Bifurcation phenomena and multiple soliton-bound states in isotropic Kerr media”, Phys. Rev. E, 49 (1994), 3376–3381 | DOI | MR