@article{ZVMMF_2014_54_1_a6,
author = {E. S. Palamarchuk},
title = {Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {89--103},
year = {2014},
volume = {54},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a6/}
}
TY - JOUR AU - E. S. Palamarchuk TI - Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 89 EP - 103 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a6/ LA - ru ID - ZVMMF_2014_54_1_a6 ER -
%0 Journal Article %A E. S. Palamarchuk %T Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 89-103 %V 54 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a6/ %G ru %F ZVMMF_2014_54_1_a6
E. S. Palamarchuk. Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 89-103. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a6/
[1] Kloeden P. E., Platen E., Numerical solution of stochastic differential equations, Springer, Berlin, 1992 | MR | Zbl
[2] Sen P., Crosby J. R., “Mixture model for individual and combined data using estimating equations”, American J. Math. and Statistics, 2:6 (2012), 129–138 | DOI
[3] Komorowski M., Costa M. J., Rand D. A., Stumpf M. P. H., “Sensitivity, robustness, and identifiability in stochastic chemical kinetics models”, Proc. of the National Academy of Sci., 108:21 (2011), 8645–8650 | DOI
[4] Lohmann G., Schneider J., “Dynamics and predictability of Stommel's box model. A phase-space perspective with implications for decadal climate variability”, Tellus Series A, 51:2 (1999), 326–336 | DOI
[5] Kvakernaak Kh., Sivan R., Lineinye optimalnye sistemy upravleniya, Mir, M., 1977
[6] Belkina T. A., Kabanov Yu. M., Presman E. L., “O stokhasticheskoi optimalnosti dlya lineino-kvadraticheskogo regulyatora”, Teoriya veroyatnostei i ee primenenie, 48:4 (2003), 661–675 | DOI | MR | Zbl
[7] Appleby J. A. D., Cheng J., Rodkina A., “Characterisation of the asymptotic behaviour of scalar linear differential equations with respect to a fading stochastic perturbation”, Discrete and Continuous Dynamical Systems Series A, 2011, 79–90 | MR
[8] Belkina T. A., Palamarchuk E. S., “O stokhasticheskoi optimalnosti dlya lineinogo regulyatora s zatukhayuschimi vozmuscheniyami”, Avtomatika i telemekhanika, 2013, no. 4, 110–128 | Zbl
[9] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov, Nauka, M., 1986 | MR | Zbl
[10] Buldygin V. V., Koval' V. O., “On the asymptotic properties of solutions of linear stochastic differential equations in $R^d$”, Ukrainian math. J., 52:4 (2000), 1334–1345 | DOI | MR | Zbl
[11] Palamarchuk E. S., “Ob usilennom zakone bolshikh chisel dlya resheniya stokhasticheskogo differentsialnogo uravneniya”, Teoriya veroyatnostei i ee prilozheniya, Mezhdunarodnaya konferentsiya, posvyaschennaya stoletiyu so dnya rozhdeniya B. V. Gnedenko, Tezisy dokladov (Moskva, 26–30 iyunya 2012 g.), Lenand, M., 2012, 57–58
[12] Kramer G., Lidbetter M., Statsionarnye sluchainye protsessy, Mir, M., 1969
[13] Karatzas I., Shreve S., Brownian motion and stochastic calculus, Springer, New York, 1991 | MR | Zbl
[14] Carlson D. A., Haurie A. B., Leizarowitz A., Infinite horizon optimal control: determenistic and stochastic systems, Springer, New York, 1991 | MR | Zbl
[15] Leizarowitz A., “Controlled diffusion processes on infinite horizon with the overtaking criterion”, Appl. Math. Optim., 17:1 (1988), 61–78 | DOI | MR | Zbl