Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 89-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behavior of a stochastic process satisfying a linear stochastic differential equation is analyzed. More specifically, the problem is solved of finding a normalizing function such that the normalized process tends to zero with probability 1. The explicit expression found for the function involves the parameters of the perturbing process, and the function itself has a simple interpretation. The solution of the indicated problem makes it possible to considerably improve almost sure optimality results for a stochastic linear regulator on an infinite time interval.
@article{ZVMMF_2014_54_1_a6,
     author = {E. S. Palamarchuk},
     title = {Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {89--103},
     year = {2014},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a6/}
}
TY  - JOUR
AU  - E. S. Palamarchuk
TI  - Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 89
EP  - 103
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a6/
LA  - ru
ID  - ZVMMF_2014_54_1_a6
ER  - 
%0 Journal Article
%A E. S. Palamarchuk
%T Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 89-103
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a6/
%G ru
%F ZVMMF_2014_54_1_a6
E. S. Palamarchuk. Asymptotic behavior of the solution to a linear stochastic differential equation and almost sure optimality for a controlled stochastic process. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 89-103. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a6/

[1] Kloeden P. E., Platen E., Numerical solution of stochastic differential equations, Springer, Berlin, 1992 | MR | Zbl

[2] Sen P., Crosby J. R., “Mixture model for individual and combined data using estimating equations”, American J. Math. and Statistics, 2:6 (2012), 129–138 | DOI

[3] Komorowski M., Costa M. J., Rand D. A., Stumpf M. P. H., “Sensitivity, robustness, and identifiability in stochastic chemical kinetics models”, Proc. of the National Academy of Sci., 108:21 (2011), 8645–8650 | DOI

[4] Lohmann G., Schneider J., “Dynamics and predictability of Stommel's box model. A phase-space perspective with implications for decadal climate variability”, Tellus Series A, 51:2 (1999), 326–336 | DOI

[5] Kvakernaak Kh., Sivan R., Lineinye optimalnye sistemy upravleniya, Mir, M., 1977

[6] Belkina T. A., Kabanov Yu. M., Presman E. L., “O stokhasticheskoi optimalnosti dlya lineino-kvadraticheskogo regulyatora”, Teoriya veroyatnostei i ee primenenie, 48:4 (2003), 661–675 | DOI | MR | Zbl

[7] Appleby J. A. D., Cheng J., Rodkina A., “Characterisation of the asymptotic behaviour of scalar linear differential equations with respect to a fading stochastic perturbation”, Discrete and Continuous Dynamical Systems Series A, 2011, 79–90 | MR

[8] Belkina T. A., Palamarchuk E. S., “O stokhasticheskoi optimalnosti dlya lineinogo regulyatora s zatukhayuschimi vozmuscheniyami”, Avtomatika i telemekhanika, 2013, no. 4, 110–128 | Zbl

[9] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov, Nauka, M., 1986 | MR | Zbl

[10] Buldygin V. V., Koval' V. O., “On the asymptotic properties of solutions of linear stochastic differential equations in $R^d$”, Ukrainian math. J., 52:4 (2000), 1334–1345 | DOI | MR | Zbl

[11] Palamarchuk E. S., “Ob usilennom zakone bolshikh chisel dlya resheniya stokhasticheskogo differentsialnogo uravneniya”, Teoriya veroyatnostei i ee prilozheniya, Mezhdunarodnaya konferentsiya, posvyaschennaya stoletiyu so dnya rozhdeniya B. V. Gnedenko, Tezisy dokladov (Moskva, 26–30 iyunya 2012 g.), Lenand, M., 2012, 57–58

[12] Kramer G., Lidbetter M., Statsionarnye sluchainye protsessy, Mir, M., 1969

[13] Karatzas I., Shreve S., Brownian motion and stochastic calculus, Springer, New York, 1991 | MR | Zbl

[14] Carlson D. A., Haurie A. B., Leizarowitz A., Infinite horizon optimal control: determenistic and stochastic systems, Springer, New York, 1991 | MR | Zbl

[15] Leizarowitz A., “Controlled diffusion processes on infinite horizon with the overtaking criterion”, Appl. Math. Optim., 17:1 (1988), 61–78 | DOI | MR | Zbl