On a singularly perturbed mixed problem for a linear parabolic equation with nonlinear boundary conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 80-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mixed problem for a linear parabolic equation with a small parameter multiplying the time derivative and with nonlinear boundary conditions is solved. Such boundary conditions arise in some heat and mass transfer problems, for example, in cooling thin spherical gas-filled shells or in the case of a gas filling such shells with gas-permeable walls.
@article{ZVMMF_2014_54_1_a5,
     author = {A. A. Belolipetskii and A. M. Ter-Krikorov},
     title = {On a singularly perturbed mixed problem for a linear parabolic equation with nonlinear boundary conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {80--88},
     year = {2014},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a5/}
}
TY  - JOUR
AU  - A. A. Belolipetskii
AU  - A. M. Ter-Krikorov
TI  - On a singularly perturbed mixed problem for a linear parabolic equation with nonlinear boundary conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 80
EP  - 88
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a5/
LA  - ru
ID  - ZVMMF_2014_54_1_a5
ER  - 
%0 Journal Article
%A A. A. Belolipetskii
%A A. M. Ter-Krikorov
%T On a singularly perturbed mixed problem for a linear parabolic equation with nonlinear boundary conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 80-88
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a5/
%G ru
%F ZVMMF_2014_54_1_a5
A. A. Belolipetskii; A. M. Ter-Krikorov. On a singularly perturbed mixed problem for a linear parabolic equation with nonlinear boundary conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 80-88. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a5/

[1] Belolipetskii A. A., “Matematicheskaya model ostyvaniya tonkostennoi obolochki pri bystrom konvektivnom peremeshivanii gaza vnutri nee”, Vestnik MGU. Ser. 15. Vychisl. matem. i kibernetika, 2001, no. 1, 14–17 | MR | Zbl

[2] Belolipetskii A. A., “Matematicheskoe modelirovanie protsessa desublimatsii izotopov vodoroda v lazernoi misheni”, Tr. MFTI, 1:4 (2009), 7–22

[3] Belolipetskii A. A., Semenov K. O., “Issledovanie matematicheskoi modeli zapolneniya dvukhsloinykh poristykh obolochek gazom”, Vestnik MGU. Ser. 15. Vychisl. matem. i kibernetika, 2011, no. 4, 3–10 | MR

[4] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR

[5] Ter-Krikorov A. M., Nelineinyi analiz i asimptoticheskie metody malogo parametra, Uchebnoe posobie, MFTI, M., 2007

[6] Belolipetskii A. A., Ter-Krikorov A. M., “O reshenii odnoi singulyarno vozmuschennoi nachalno-kraevoi zadachi dlya lineinogo parabolicheskogo uravneniya”, Tr. MFTI, 3:1 (2011), 14–17 | MR