Stability of autoresonance models subject to random perturbations for systems of nonlinear oscillation equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 65-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Systems of differential equations arising in the theory of nonlinear oscillations in resonance-related problems are considered. Of special interest are solutions whose amplitude increases without bound with time. Specifically, such solutions correspond to autoresonance. The stability of autoresonance solutions with respect to random perturbations is analyzed. The classes of admissible perturbations are described. The results rely on information on Lyapunov functions for the unperturbed equations.
@article{ZVMMF_2014_54_1_a4,
     author = {O. A. Sultanov},
     title = {Stability of autoresonance models subject to random perturbations for systems of nonlinear oscillation equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {65--79},
     year = {2014},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a4/}
}
TY  - JOUR
AU  - O. A. Sultanov
TI  - Stability of autoresonance models subject to random perturbations for systems of nonlinear oscillation equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 65
EP  - 79
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a4/
LA  - ru
ID  - ZVMMF_2014_54_1_a4
ER  - 
%0 Journal Article
%A O. A. Sultanov
%T Stability of autoresonance models subject to random perturbations for systems of nonlinear oscillation equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 65-79
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a4/
%G ru
%F ZVMMF_2014_54_1_a4
O. A. Sultanov. Stability of autoresonance models subject to random perturbations for systems of nonlinear oscillation equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 65-79. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a4/

[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[2] Kalyakin L. A., “Asimptoticheskii analiz modelei avtorezonansa”, Uspekhi matem. nauk, 63:5 (2008), 3–72 | DOI | MR | Zbl

[3] Veksler V. I., “Novyi metod uskoreniya relyativistskikh chastits”, Dokl. AN SSSR, 43:8 (1944), 346–348

[4] Golovanivskii K. S., “Giromagnitnyi avtorezonans s peremennoi chastotoi”, Fizika plazmy, 11:3 (1985), 295–299

[5] Fajansa J., Friedland L., “Autoresonant (nonstationary) excitation of pendulums, Plutinos, plasmas, and other nonlinear oscillators”, Am. J. Phys., 69:10 (2001), 1096–1102 | DOI

[6] Borovik-Romanov A. S., Bunkov Yu. M., Dumesh B. S. i dr., “Spinovoe ekho v sistemakh so svyazannoi yaderno-elektronnoi pretsessiei”, Uspekhi fiz. nauk, 142:4 (1984), 537–570 | DOI

[7] Kalyakin L. A., Sultanov O. A., Shamsutdinov M. A., “Asimptoticheskii analiz modeli yadernogo magnitnogo avtorezonansa”, Teor. i matem. fiz., 167:3 (2011), 419–430

[8] Kuznetsov A. N., “O suschestvovanii vkhodyaschikh v osobuyu tochku reshenii avtonomnoi sistemy, obladayuschei formalnym resheniem”, Funkts. analiz i ego prilozh., 23:4 (1989), 63–74 | MR | Zbl

[9] Kozlov V. V., Furta S. D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, Izd-vo Moskov. un-ta, M., 1996 | MR | Zbl

[10] Kalyakin L. A., “Asimptotiki reshenii uravnenii glavnogo rezonansa”, Teor. i matem. fiz., 137:1 (2003), 142–152 | DOI | MR | Zbl

[11] Kiselev O. M., Glebov S. G., “The capture into parametric autoresonance”, Nonlinear Dynam., 48:1–2 (2007), 217–230 | DOI | MR | Zbl

[12] Kalyakin L. A., Sultanov O. A., “Ustoichivost modelei avtorezonansa”, Differents. ur-niya, 49:3 (2012), 279–293

[13] Sultanov O. A., “Ustoichivost modelei avtorezonansa pri postoyanno deistvuyuschikh vozmuscheniyakh”, Tr. IMM UrO RAN, 18, no. 2, 2012, 254–264

[14] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969 | MR

[15] Schuss Z., Theory and applications of stochastic processes, Applied Mathematical Sciences, 170, Springer, 2010 | DOI | MR | Zbl

[16] Kats I. Ya., Metod funktsii Lyapunova v zadachakh ustoichivosti i stabilizatsii sistem sluchainoi struktury, izd-vo Uralskoi gos. akademii putei soobscheniya, Ekaterinburg, 1998

[17] Khapaev M. M., Asimptoticheskie metody i ustoichivost v teorii nelineinykh kolebanii, Vyssh. shk., M., 1988 | MR

[18] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR

[19] Germaidze V. E., “Ob asimptoticheskoi ustoichivosti po pervomu priblizheniyu”, Prikl. matem. i mekhan., 21:1 (1957), 133–135 | MR

[20] Kalyakin L. A., “Ustoichivost nedissipativnykh sistem otnositelno postoyanno deistvuyuschikh sluchainykh vozmuschenii”, Matem. zametki, 92:1 (2012), 145–148 | DOI | MR | Zbl

[21] Kalyakin L. A., “Ustoichivost nedissipativnykh sistem otnositelno sluchainykh vozmuschenii, malykh v srednem”, Tr. IMM UrO RAN, 19, no. 2, 2013, 170–178

[22] Sultanov O. A., “Funktsii Lyapunova dlya neavtonomnykh sistem blizkikh k gamiltonovym”, Ufimskii matem. zh., 2:4 (2010), 98–108

[23] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979 | MR | Zbl