Reduction of dimension of optimal estimation problems for dynamical systems with singular perturbations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 50-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The possibility of applying the method of integral manifolds to the reduction of optimal filtering problems for systems with low energy dissipation is explored. For such systems, it is shown that the slow subsystem of matrix Riccati differential equations turns out to have a higher dimension than expected, which leads to an increase in the dimension of the reduced problems. An optimal filter is constructed for the Langevin equation and for a dynamic model of a single-link flexible manipulator.
@article{ZVMMF_2014_54_1_a3,
     author = {M. O. Osintsev and V. A. Sobolev},
     title = {Reduction of dimension of optimal estimation problems for dynamical systems with singular perturbations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {50--64},
     year = {2014},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a3/}
}
TY  - JOUR
AU  - M. O. Osintsev
AU  - V. A. Sobolev
TI  - Reduction of dimension of optimal estimation problems for dynamical systems with singular perturbations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 50
EP  - 64
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a3/
LA  - ru
ID  - ZVMMF_2014_54_1_a3
ER  - 
%0 Journal Article
%A M. O. Osintsev
%A V. A. Sobolev
%T Reduction of dimension of optimal estimation problems for dynamical systems with singular perturbations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 50-64
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a3/
%G ru
%F ZVMMF_2014_54_1_a3
M. O. Osintsev; V. A. Sobolev. Reduction of dimension of optimal estimation problems for dynamical systems with singular perturbations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 50-64. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a3/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[2] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990 | MR

[3] Vasileva A. B., Butuzov V. F., Singulyarno vozmuschennye uravneniya v kriticheskikh sluchayakh, Izd-vo MGU, M., 1978 | MR

[4] Gu Z.-M., Nefedov N. N., O'Malley R. E., Jr., “On singular singularly perturbed initial value problems”, SIAM J. Appl. Math., 49:1 (1989), 1–25 | MR | Zbl

[5] Kononenko L. I., Sobolev V. A., “Asimptoticheskie razlozheniya medlennykh integralnykh mnogoobrazii”, Sib. matem. zhurnal, 35:6 (1994), 1264–1278 | MR | Zbl

[6] Sobolev V. A., “Geometriya singulyarnykh vozmuschenii v vyrozhdennykh sluchayakh”, Matem. modelirovanie, 13:12 (2001), 75–94 | MR | Zbl

[7] Sobolev V. A., Tropkina E. A., “Asimptoticheskie razlozheniya medlennykh invariantnykh mnogoobrazii i reduktsiya modelei khimicheskoi kinetiki”, Zh. vychisl. matem. i matem. fiz., 52:1 (2012), 81–96 | MR | Zbl

[8] Sobolev V. A., Schepakina E. A., Reduktsiya modelei i kriticheskie yavleniya v makrokinetike, Fizmatlit, M., 2010 | Zbl

[9] O'Malley R. E., Singular perturbations and hysteresis, eds. Mortell M. P. Pokrovskii A., Sobolev V. A., SIAM, Philadelphia, 2005 | MR

[10] Strygin V. V., Sobolev V. A., Razdelenie dvizhenii metodom integralnykh mnogoobrazii, Nauka, M., 1988 | MR | Zbl

[11] Butuzov V. F., Nefedov N. N., Shnaider K. R., “Singulyarno vozmuschennye zadachi v sluchae smeny ustoichivosti”, Differents. ur-niya. Singulyarnye vozmuscheniya, Itogi nauki i tekhniki. Ser. Sovr. matem. i ee prilozheniya. Tematicheskie obzory, 109, 2002, 5–42 | MR

[12] Kitaeva E. V., Sobolev V. A., “Chislennoe otyskanie ogranichennykh na vsei osi reshenii diskretnykh singulyarno vozmuschennykh uravnenii i kriticheskikh rezhimov goreniya”, Zh. vychisl. matem. i matem. fiz., 45:1 (2005), 56–87 | MR | Zbl

[13] Voropaeva N. V., Sobolev V. A., Geometricheskaya dekompozitsiya singulyarno vozmuschennykh sistem, Fizmatlit, M., 2009 | Zbl

[14] Kokotovic P. V., Khalil K. H., O'Reilly J., Singular perturbation methods in control: Analysis and Design, Academic Press, Inc., London, 1986 | MR | Zbl

[15] Papoulis A., Probability, random variables, and stochastic processes, McGraw Hill, New York, 1965 | MR | Zbl

[16] Sobolev V. A., “Singulyarnye vozmuscheniya v lineino-kvadratichnoi zadache optimalnogo upravleniya”, Avtomatika i telemekhan., 1991, no. 2, 53–64 | MR | Zbl

[17] Andreev Yu. N., Upravlenie konechnomernymi lineinymi ob'ektami, Nauka, M., 1976 | MR

[18] R. J. M. v.d. Ven, Modelling and control of a rotating flexible link, Research project rept., Eihoven University of Technology, 2001

[19] Kuznetsov D. F., Chislennoe modelirovanie stokhasticheskikh differentsialnykh uravnenii i stokhasticheskikh integralov, Nauka, SPb., 1999