@article{ZVMMF_2014_54_1_a2,
author = {M. I. Sumin},
title = {Stable sequential convex programming in a {Hilbert} space and its application for solving unstable problems},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {25--49},
year = {2014},
volume = {54},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a2/}
}
TY - JOUR AU - M. I. Sumin TI - Stable sequential convex programming in a Hilbert space and its application for solving unstable problems JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2014 SP - 25 EP - 49 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a2/ LA - ru ID - ZVMMF_2014_54_1_a2 ER -
%0 Journal Article %A M. I. Sumin %T Stable sequential convex programming in a Hilbert space and its application for solving unstable problems %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2014 %P 25-49 %V 54 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a2/ %G ru %F ZVMMF_2014_54_1_a2
M. I. Sumin. Stable sequential convex programming in a Hilbert space and its application for solving unstable problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 25-49. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a2/
[1] Vasilev F. P., Metody optimizatsii, V 2-kh kn., MTsNMO, M., 2011
[2] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl
[3] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov, Uch. posobie, Izd-vo Nizhegorodskogo gos. un-ta, N. Novgorod, 2009
[4] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615 | MR | Zbl
[5] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Applied Mathematics, 3:10A, Special issue “Optimization” (2012), 1334–1350 | DOI
[6] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR
[7] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR
[8] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR
[9] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 | MR
[10] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in Banach space. I: Theory”, Can. Math., 38:2 (1986), 431–452 ; “II: Applications”, Can. J. Math., 39:2 (1987), 428–472 | DOI | MR | Zbl | DOI | MR | Zbl
[11] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR
[12] Loewen P. D., Optimal Control via Nonsmooth Analysis, CRM Proc. and Lecture Notes, 2, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[13] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR
[14] Sumin M. I., “Dvoistvennaya regulyarizatsiya i printsip maksimuma Pontryagina v zadache optimalnogo granichnogo upravleniya dlya parabolicheskogo uravneniya s nedifferentsiruemymi funktsionalami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 229–244
[15] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 2001–2019 | MR | Zbl
[16] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR
[17] Plotnikov V. I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, Dokl. AN SSSR, 165:1 (1965), 33–35 | MR | Zbl