Stable sequential convex programming in a Hilbert space and its application for solving unstable problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 25-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A parametric convex programming problem with an operator equality constraint and a finite set of functional inequality constraints is considered in a Hilbert space. The instability of this problem and, as a consequence, the instability of the classical Lagrange principle for it is closely related to its regularity and the subdifferentiability properties of the value function in the optimization problem. A sequential Lagrange principle in nondifferential form is proved for the indicated convex programming problem. The principle is stable with respect to errors in the initial data and covers the normal, regular, and abnormal cases of the problem and the case where the classical Lagrange principle does not hold. It is shown that the classical Lagrange principle in this problem can be naturally treated as a limiting variant of its stable sequential counterpart. The possibility of using the stable sequential Lagrange principle for directly solving unstable optimal control problems and inverse problems is discussed. For two illustrative problems of these kinds, the corresponding stable Lagrange principles are formulated in sequential form.
@article{ZVMMF_2014_54_1_a2,
     author = {M. I. Sumin},
     title = {Stable sequential convex programming in a {Hilbert} space and its application for solving unstable problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {25--49},
     year = {2014},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a2/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - Stable sequential convex programming in a Hilbert space and its application for solving unstable problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 25
EP  - 49
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a2/
LA  - ru
ID  - ZVMMF_2014_54_1_a2
ER  - 
%0 Journal Article
%A M. I. Sumin
%T Stable sequential convex programming in a Hilbert space and its application for solving unstable problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 25-49
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a2/
%G ru
%F ZVMMF_2014_54_1_a2
M. I. Sumin. Stable sequential convex programming in a Hilbert space and its application for solving unstable problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 25-49. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a2/

[1] Vasilev F. P., Metody optimizatsii, V 2-kh kn., MTsNMO, M., 2011

[2] Sumin M. I., “Regulyarizatsiya v lineino vypukloi zadache matematicheskogo programmirovaniya na osnove teorii dvoistvennosti”, Zh. vychisl. matem. i matem. fiz., 47:4 (2007), 602–625 | MR | Zbl

[3] Sumin M. I., Nekorrektnye zadachi i metody ikh resheniya. Materialy k lektsiyam dlya studentov starshikh kursov, Uch. posobie, Izd-vo Nizhegorodskogo gos. un-ta, N. Novgorod, 2009

[4] Sumin M. I., “Regulyarizovannaya parametricheskaya teorema Kuna–Takkera v gilbertovom prostranstve”, Zh. vychisl. matem. i matem. fiz., 51:9 (2011), 1594–1615 | MR | Zbl

[5] Sumin M. I., “On the stable sequential Kuhn–Tucker theorem and its applications”, Applied Mathematics, 3:10A, Special issue “Optimization” (2012), 1334–1350 | DOI

[6] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[7] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[8] Oben Zh.-P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR

[9] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 | MR

[10] Borwein J. M., Strojwas H. M., “Proximal analysis and boundaries of closed sets in Banach space. I: Theory”, Can. Math., 38:2 (1986), 431–452 ; “II: Applications”, Can. J. Math., 39:2 (1987), 428–472 | DOI | MR | Zbl | DOI | MR | Zbl

[11] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR

[12] Loewen P. D., Optimal Control via Nonsmooth Analysis, CRM Proc. and Lecture Notes, 2, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[13] Demyanov V. F., Vasilev L. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981 | MR

[14] Sumin M. I., “Dvoistvennaya regulyarizatsiya i printsip maksimuma Pontryagina v zadache optimalnogo granichnogo upravleniya dlya parabolicheskogo uravneniya s nedifferentsiruemymi funktsionalami”, Tr. In-ta matematiki i mekhaniki UrO RAN, 17, no. 1, 2011, 229–244

[15] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 2001–2019 | MR | Zbl

[16] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[17] Plotnikov V. I., “Teoremy edinstvennosti, suschestvovaniya i apriornye svoistva obobschennykh reshenii”, Dokl. AN SSSR, 165:1 (1965), 33–35 | MR | Zbl