@article{ZVMMF_2014_54_1_a14,
author = {E. Ullah and S. A. Khan},
title = {Computing border bases using mutant strategies},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {170},
year = {2014},
volume = {54},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a14/}
}
E. Ullah; S. A. Khan. Computing border bases using mutant strategies. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a14/
[1] B. Buchberger, Ph. D. Thesis, Univ. of Innsbruck, Innsbruck, 1965 | Zbl
[2] J.-C. Faugère, “A new efficient algorithm for computing Gröbner basis (F4)”, J. Pure Appl. Alg., 139 (1999), 61–88 | DOI | MR | Zbl
[3] J.-C. Faugère, “A new efficient algorithm for computing Gröbner basis without reduction to zero (F5)”, Proceedings of International Symposium on Symbolic and Algebraic Computation, ISSAC 2002, ACM, New York, 2002 | MR | Zbl
[4] N. T. Courtois, A. Klimov, J. Patarin, A. Shamir, “Efficient algorithms for solving overdefined systems of multivariate polynomial equations”, Advances in Cryptography, EUROCRYPT 2000, LNCS, 1807, ed. B. Preneel, Springer-Verlag, Berlin, 2000, 392–407 | MR | Zbl
[5] M. Sugita, M. Kawazoe, H. Imai, Relation between XL algorithm and Gröbner bases algorithms, Cryptol., Report 2004/112, , 2004 http://eprint.iacr.org/
[6] J. Ding, Mutants and its impact on polynomial solving strategies and algorithms, Privately distributed research note, Univ. of Cincinnati and Technical Univ., Darmstadt, 2006
[7] M. S. E. Mohamed, W. S. A. Mohamed, J. Ding, J. Buchmann, “MXL2: Solving polynomial equations over GF(2) using an improved mutant strategy”, Proceeding of the Second International Workshop on Post-Quantum Cryptography, PQCrypto08 (Cincinnati, USA), LNCS, Springer-Verlag, Berlin, 2008, 203–215 | MR | Zbl
[8] J. Ding, J. Buchmann, M. S. E. Mohamed, W. S. A. Mohamed, R.-P. Weinmann, “MutantXL”, Proceedings of Conference on Symbolic Computation and Cryptography (Beijing, 2008), eds. J.-C. Faugère, L. Perret, Birkhäuser, 2009
[9] M. S. E. Mohamed, J. Ding, J. Buchmann, Algebraic cryptanalysis of MQQ public key cryptosystem by MutantXL, Technical Report 2008/451, Cryptology ePrint Archive, 2008
[10] M. S. E. Mohamed, D. Cabarcas, J. Ding, J. Buchmann, S. Bulygin, “MXL3: An efficient algorithm for computing Gröbner bases of zero dimensional ideals”, Proceedings of the 12th International Conference on Information Security and Cryptology, ICISC 2009, LNCS, 5984, Springer-Verlag, Berlin, 2010, 87–100 | MR
[11] M. Albrecht, C. Cid, J.-C. Faugère, L. Perret, “On the relation between the MXL family of algorithms and Gröbner basis algorithms”, J. Symbolic Comput., 47 (2012), 926–941 | DOI | MR | Zbl
[12] M. Kreuzer, Algebraic attacks galore!, Groups Complexity Cryptol., 1 (2009), 231–259 | MR | Zbl
[13] W. Auzinger, H. J. Stetter, “An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations”, Proceedings of the International Conference on Numerical Mathematics (National University of Singapore, May 31–June 4, 1988), Birkhäuser, 1988, 11–30 | MR
[14] B. Mourrain, “A new criterion for normal form algorithms”, Proceedings of the AAECC13 Conference (Honolulu, 1999), LNCS, 1719, eds. M. Fossorier, H. Imai, S. Lin, A. Poli, Springer-Verlag, Heidelberg, 1999, 440–443 | MR
[15] A. Kehrein, M. Kreuzer, “Computing border bases”, J. Pure Appl. Alg., 205 (2005), 279–295 | DOI | MR
[16] M. Borges-Quintana, M. A. Borges-Trenard, E. Martinez-Moro, “An application of Moller's algorithm to coding theory”, Gröbner Bases, Coding, and Cryptography, eds. M. Sala, T. Mora, L. Perret, S. Sakata, C. Traverso, Springer, Berlin, 2009, 379–384 | Zbl
[17] J. Abbott, C. Fassino, M. L. Torrente, “Stable border basis for ideals of points”, J. Symbolic Comput., 43 (2008), 883–894 | DOI | MR | Zbl
[18] D. Heldt, M. Kreuzer, S. Pokutta, H. Poulisse, “Approximate computation of zero-dimensional polynomial ideals”, J. Symbolic Comput., 44 (2009), 1566–1599 | DOI | MR
[19] M. Kreuzer, H. Poulisse, Subideal border bases, Preprint, 2009 | MR
[20] G. Braun, S. Pokutta, A polyhedral approach to computing border bases, 2010, arXiv: math.AG/0911.0859v3
[21] S. Kaspar, “Computing border bases without using a term ordering”, Beitrage zur Algebra und Geometrie, Contributions to Algebra and Geometry, 54:1 (2013), 211–223 | DOI | MR | Zbl
[22] B. Mourrain, P. Trebuchet, “Border basis representation of a general quotient algebra”, International Conference on Symbolic and Algebraic Computation, ISSAC (Grenoble, France, 2012), ACM, 2012
[23] N. Courtois, L. Goubin, W. Meier, J.-D. Tacier, “Solving underdefined systems of multivariate quadratic equations”, Public Key Cryptography, PKC 2002, LNCS, 2274, eds. D. Naccache, D. Paillier, Springer, Berlin, 2002, 211–227 | Zbl
[24] J. Patarin, “Hidden fields equations (HFE) and isomorphisms of polynomials (IP): Two new families of asymmetric algorithms”, EUROCRVPT, 1996, 33–48 http://www.minrank.org/hfe.pdf
[25] J. Buchmann, D. Cabarcas, J. Ding, M. S. E. Mohamed, “Flexible partial enlargement to accelerate Gröbner basis computation over $\mathrm{F}_2$”, Progress in Cryptology, AFRICACRYPT 2010: Proceedings of the 3rd International Conference on Cryptology, LNCS, 6055, Springer, Berlin, 2010, 69–81 | MR | Zbl
[26] M. Kreuzer, L. Robbiano, Computational Commutative Algebra, v. 1, Springer, Berlin, 2000 | MR | Zbl
[27] M. Kreuzer, L. Robbiano, Computational Commutative Algebra, v. 2, Springer, Berlin, 2000 | MR | Zbl
[28] A. Kehrein, M. Kreuzer, “Characterizations of border bases”, J. Pure Appl. Alg., 196 (2005), 251–270 | DOI | MR | Zbl
[29] A. Kehrein, M. Kreuzer, L. Robbiano, “An algebraist's view on border bases”, Solving Polynomial Equations: Foundations, Algorithms, and Applications, Springer, Berlin, 2005, 169–202 | DOI | MR | Zbl
[30] The ApCoCoA Team http://www.apcocoa.org
[31] J. Limbeck, Implementation und optimierung algebraischer angriffe, Diploma Thesis, Univ. Passau, 2008
[32] M. Albrecht, G. Bard, M4RI: Linear algebra over GF(2), , 2008 http://m4ri.sagemath.org/index.html
[33] W. Bosma, J. Cannon, C. Playoust, “The Magma algebra system. I: The user language”, J. Symbolic Comput., 24 (1997), 235–265 | DOI | MR | Zbl
[34] J. Buchmann, J. Ding, M. S. E. Mohamed, W. S. A. Mohamed, “MutantXL: Solving Multivariate Polynomial Equations for Cryptanalysis”, Symmetric Cryptography, Dagstuhl Seminar Proceedings, eds. H. Handschuh, S. Lucks, B. Preneel, P. Rogaway, Schloss Dagstuhl, Leibniz-Zentrum für Informatik, Germany, 2009
[35] M. S. E. Mohamed, W. S. A. Mohamed, J. Ding, J. Buchmann, The complexity analysis of the MutantXL family, Preprint, 2010