On the development of a wake vortex in inviscid flow
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 164-169 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The evolution of an initial perturbation in an axisymmetric subsonic normal inviscid gas flow through a pipe is directly simulated. The basic (unperturbed) flow has a zero radial velocity component, while its axial velocity component (along the axis of symmetry) increases or decreases linearly with the radius. The perturbation is specified as a swirl (rotation about the axis) with a positive or negative velocity vanishing on the central axis and the lateral surface. Irrespective of its direction, the swirl gives rise to a steady-state vortex carried by the flow. It shape is spherical (contiguous to the rotation axis) or circular (sliding along the impermeable lateral surface).
@article{ZVMMF_2014_54_1_a13,
     author = {O. M. Belotserkovskii and M. S. Belotserkovskaya and V. V. Denisenko and I. V. Eriklintsev and S. A. Kozlov and E. I. Oparina and O. V. Troshkin and S. V. Fortova},
     title = {On the development of a wake vortex in inviscid flow},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {164--169},
     year = {2014},
     volume = {54},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a13/}
}
TY  - JOUR
AU  - O. M. Belotserkovskii
AU  - M. S. Belotserkovskaya
AU  - V. V. Denisenko
AU  - I. V. Eriklintsev
AU  - S. A. Kozlov
AU  - E. I. Oparina
AU  - O. V. Troshkin
AU  - S. V. Fortova
TI  - On the development of a wake vortex in inviscid flow
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2014
SP  - 164
EP  - 169
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a13/
LA  - ru
ID  - ZVMMF_2014_54_1_a13
ER  - 
%0 Journal Article
%A O. M. Belotserkovskii
%A M. S. Belotserkovskaya
%A V. V. Denisenko
%A I. V. Eriklintsev
%A S. A. Kozlov
%A E. I. Oparina
%A O. V. Troshkin
%A S. V. Fortova
%T On the development of a wake vortex in inviscid flow
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2014
%P 164-169
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a13/
%G ru
%F ZVMMF_2014_54_1_a13
O. M. Belotserkovskii; M. S. Belotserkovskaya; V. V. Denisenko; I. V. Eriklintsev; S. A. Kozlov; E. I. Oparina; O. V. Troshkin; S. V. Fortova. On the development of a wake vortex in inviscid flow. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 54 (2014) no. 1, pp. 164-169. http://geodesic.mathdoc.fr/item/ZVMMF_2014_54_1_a13/

[1] Belotserkovskii O. M., “Computational experiment: direct numerical simulations of complex gas-dynamics flows on the basis of Euler, Navier–Stokes and Boltzmann models”, Numerical Methods in Fluid Dynamics, Karman's Lecture (von Karman Institute for Fluid Dynamics, March 15–19, 1976, Brussel), eds. H. J. Wirz, J. J. Smolderen, Hermisphere, Washington–London, 1978, 339–387

[2] Belotserkovskii O. M., “Pryamoe chislennoe modelirovanie svobodnoi razvitoi turbulentnosti”, Zh. vychisl. i matem. i matem. fiz., 25:12 (1985), 1857–1882 | MR

[3] Belotserkovskii O. M., Constructive modeling of structural turbulence and hydrodynamic instabilities, World Sci. Publish. Co., Singapore, 2009, 464 pp. | MR | Zbl

[4] Yudovich V. I., “Dvumernaya nestatsionarnaya zadacha protekaniya idealnoi zhidkosti cherez zadannuyu oblast”, Matem. sb., 64 (1964), 562–588

[5] Alekseev G. V., “O edinstvennosti i gladkosti turbulentnykh techenii idealnoi zhidkosti”, Sb. nauchnykh trudov, Dinamika sploshnoi sredy, 15, Novosibirsk, 1973, 7–17 | MR

[6] Dezin A. A., “Invariantnye formy i nekotorye strukturnye svoistva gidrodinamicheskikh uravnenii Eilera”, Zeit. fur Anal. Und ihre Anwendungen, 2:5 (1983), 401–409 | MR | Zbl

[7] Troshkin O. V., “O topologicheskom analize struktury gidrodinamicheskikh techenii”, UMN, 43:4 (262) (1988), 129 | MR | Zbl

[8] Troshkin O. V., “Dvumernaya zadacha o protekanii dlya statsionarnykh uravnenii Eilera”, Matem. sb., 180:3 (1989), 354–374

[9] Troshkin O. V., Voprosy kachestvennogo analiza uravnenii matematicheskoi gidrodinamiki, Dis. ... dokt. fiz.-matem. nauk, VTs AN SSSR, M., 1990

[10] Troshkin O. V., Nontraditional methods in mathematical Hydrodynamics, Translations of Math. Monographs, 144, AMS, Providence, RI, USA, 1995, 197 pp. | MR | Zbl

[11] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Leningradskii gos. un-t, L., 1950, 255 pp. | MR | Zbl

[12] Van-Daik M., Albom techenii zhidkosti i gaza, Mir, M., 1986

[13] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[14] Belotserkovskii O. M., Konyukhov A. V., Oparin A. M. i dr., “O strukturirovanii khaosa”, Zh. vychisl. matem. i matem. fiz., 51:2 (2011), 237–250 | MR | Zbl

[15] Belotserkovskii O. M., Betelin V. B., Borisevich V. D. i dr., “K teorii protivotoka vo vraschayuschemsya vyazkom teploprovodnom gaze”, Zh. vychisl. matem. i matem. fiz., 51:2 (2011), 222–236 | MR

[16] Görtler H., “Dreidimensionales zur Stabilitätstheorie laminarer grenzschichten”, Z. Angew. Math. Mech., 35 (1955), 362–363 | DOI

[17] Dzhozef D., Ustoichivost dvizhenii zhidkosti, Mir, M., 1981, 638 pp.

[18] Dirak P. A. M., “Dvizhenie v tsentrifuge s samofraktsionirovaniem”, Sobr. nauchn. tr., v. 4, Fizmatlit, M., 2005, 538–545

[19] Troshkin O. V., “Dissipativnyi volchok na slabo kompaktnoi algebre Li i ustoichivost osnovnykh techenii v ploskom kanale”, Dokl. AN, 442:2 (2012), 184–189 | MR

[20] Troshkin O. V., “K ustoichivosti techenii Kuetta–Puazeilya i Kuetta–Kolmogorova v ploskom kanale”, Dokl. AN, 443:1 (2012), 29–33 | MR | Zbl